MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards lifelong feature-based mapping in semi-static environments

Author(s)
Rosen, David Matthew; Mason, Julian; Leonard, John J
Thumbnail
DownloadLeonard_Towards lifelong.pdf (620.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The feature-based graphical approach to robotic mapping provides a representationally rich and computationally efficient framework for an autonomous agent to learn a model of its environment. However, this formulation does not naturally support long-term autonomy because it lacks a notion of environmental change; in reality, “everything changes and nothing stands still, ” and any mapping and localization system that aims to support truly persistent autonomy must be similarly adaptive. To that end, in this paper we propose a novel feature-based model of environmental evolution over time. Our approach is based upon the development of an expressive probabilistic generative feature persistence model that describes the survival of abstract semi-static environmental features over time. We show that this model admits a recursive Bayesian estimator, the persistence filter, that provides an exact online method for computing, at each moment in time, an explicit Bayesian belief over the persistence of each feature in the environment. By incorporating this feature persistence estimation into current state-of-the-art graphical mapping techniques, we obtain a flexible, computationally efficient, and information-theoretically rigorous framework for lifelong environmental modeling in an ever-changing world.
Date issued
2016-06
URI
http://hdl.handle.net/1721.1/107620
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Rosen, David M., Julian Mason, and John J. Leonard. “Towards Lifelong Feature-Based Mapping in Semi-Static Environments.” IEEE, 2016. 1063–1070.
Version: Author's final manuscript
ISBN
978-1-4673-8026-3

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.