Show simple item record

dc.contributor.authorNicolls, Michael J.
dc.contributor.authorMcCready, Mary
dc.contributor.authorKelly, John
dc.contributor.authorZhang, Shun-Rong
dc.contributor.authorHolt, John M
dc.contributor.authorErickson, Philip J
dc.contributor.authorGoncharenko, Larisa
dc.date.accessioned2017-03-21T20:07:50Z
dc.date.available2017-03-21T20:07:50Z
dc.date.issued2016-09
dc.date.submitted2016-07
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttp://hdl.handle.net/1721.1/107625
dc.description.abstractIt is now recognized that Earth's upper atmosphere is experiencing a long-term cooling over the past several solar cycles. The potential impact of the cooling on societal activities is significant, but a fundamental scientific question exists regarding the drivers of the cooling. New observations and analyses provide crucial advances in our knowledge of these important processes. We investigate ionospheric ion temperature climatology and long-term trends using up-to-date large and consistent ground-based data sets as measured by multiple incoherent scatter radars (ISRs). The very comprehensive view provided by these unique observations of the upper atmospheric thermal status allows us to address drivers of strong cooling previously observed by ISRs. We use observations from two high-latitude sites at Sondrestrom (invariant latitude 73.2°N) from 1990 to 2015 and Chatanika/Poker Flat (invariant latitude 65.9°N) over the span of 1976–2015 (with a gap from 1983 to 2006). Results are compared to conditions at the midlatitude Millstone Hill site (invariant latitude 52.8°N) from 1968 to 2015. The aggregate radar observations have very comparable and consistent altitude dependence of long-term trends. In particular, the lower F region (<275 km) exhibits dayside cooling trends that are significantly higher (−3 to −1 K/yr at 250 km) than anticipated from model predictions given the anthropogenic increase of greenhouse gases. Above 275 km, cooling trends continue to increase in magnitude but values are strongly dependent on magnetic latitude, suggesting the presence of significant downward influences from nonneutral atmospheric processes.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Awards AGS-1042569 and AGS-1343056)en_US
dc.language.isoen_US
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.isversionofhttp://doi.org/10.1002/2016JA022971en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceZhangen_US
dc.titleIonospheric ion temperature climate and upper atmospheric long-term coolingen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Shun-Rong et al. “Ionospheric Ion Temperature Climate and Upper Atmospheric Long-Term Cooling: UPPER ATMOSPHERIC COOLING.” Journal of Geophysical Research: Space Physics 121.9 (2016): 8951–8968.en_US
dc.contributor.departmentHaystack Observatoryen_US
dc.contributor.approverZhang, Shun-Rongen_US
dc.contributor.mitauthorZhang, Shun-Rong
dc.contributor.mitauthorHolt, John M
dc.contributor.mitauthorErickson, Philip J
dc.contributor.mitauthorGoncharenko, Larisa
dc.relation.journalJournal of Geophysical Research: Space Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZhang, Shun-Rong; Holt, John M.; Erickson, Philip J.; Goncharenko, Larisa P.; Nicolls, Michael J.; McCready, Mary; Kelly, Johnen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record