Intercalated water layers promote thermal dissipation at bio–nano interfaces
Author(s)
Wang, Yanlei; Qin, Zhao; Buehler, Markus J; Xu, Zhiping
DownloadIntercalated water.pdf (941.4Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
The increasing interest in developing nanodevices for biophysical and biomedical applications results in concerns about thermal management at interfaces between tissues and electronic devices. However, there is neither sufficient knowledge nor suitable tools for the characterization of thermal properties at interfaces between materials of contrasting mechanics, which are essential for design with reliability. Here we use computational simulations to quantify thermal transfer across the cell membrane–graphene interface. We find that the intercalated water displays a layered order below a critical value of ∼1 nm nanoconfinement, mediating the interfacial thermal coupling, and efficiently enhancing the thermal dissipation. We thereafter develop an analytical model to evaluate the critical value for power generation in graphene before significant heat is accumulated to disturb living tissues. These findings may provide a basis for the rational design of wearable and implantable nanodevices in biosensing and thermotherapic treatments where thermal dissipation and transport processes are crucial.
Date issued
2016-09Department
Massachusetts Institute of Technology. Center for Computational Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Nature Communications
Publisher
Nature Publishing Group
Citation
Wang, Yanlei, Zhao Qin, Markus J. Buehler, and Zhiping Xu. “Intercalated Water Layers Promote Thermal Dissipation at Bio–nano Interfaces.” Nature Communications 7 (September 23, 2016): 12854. .
Version: Final published version
ISSN
2041-1723