Show simple item record

dc.contributor.authorDesai, Mitul
dc.contributor.authorSlusarczyk, Adrian Lukas
dc.contributor.authorChapin, Ashley A.
dc.contributor.authorBarch, Mariya
dc.contributor.authorJasanoff, Alan Pradip
dc.date.accessioned2017-03-22T15:28:19Z
dc.date.available2017-03-22T15:28:19Z
dc.date.issued2016-12
dc.date.submitted2016-03
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/107640
dc.description.abstractIn vivo imaging techniques are powerful tools for evaluating biological systems. Relating image signals to precise molecular phenomena can be challenging, however, due to limitations of the existing optical, magnetic and radioactive imaging probe mechanisms. Here we demonstrate a concept for molecular imaging which bypasses the need for conventional imaging agents by perturbing the endogenous multimodal contrast provided by the vasculature. Variants of the calcitonin gene-related peptide artificially activate vasodilation pathways in rat brain and induce contrast changes that are readily measured by optical and magnetic resonance imaging. CGRP-based agents induce effects at nanomolar concentrations in deep tissue and can be engineered into switchable analyte-dependent forms and genetically encoded reporters suitable for molecular imaging or cell tracking. Such artificially engineered physiological changes, therefore, provide a highly versatile means for sensitive analysis of molecular events in living organisms.en_US
dc.description.sponsorshipNational Institute of Mental Health (U.S.) (R01-MH103160)en_US
dc.description.sponsorshipNational Institute of Mental Health (U.S.) (R01-NS076462)en_US
dc.description.sponsorshipBRAIN Initiative (award R24-MH109081)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Simons Center for the Social Brainen_US
dc.description.sponsorshipBoehringer Ingelheim Fonds (predoctoral fellowships)en_US
dc.description.sponsorshipMcGovern Institute for Brain Research at MITen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms13607en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleMolecular imaging with engineered physiologyen_US
dc.typeArticleen_US
dc.identifier.citationDesai, Mitul, Adrian L. Slusarczyk, Ashley Chapin, Mariya Barch, and Alan Jasanoff. “Molecular Imaging with Engineered Physiology.” Nature Communications 7 (December 2, 2016): 13607. doi:10.1038/ncomms13607.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorDesai, Mitul
dc.contributor.mitauthorSlusarczyk, Adrian Lukas
dc.contributor.mitauthorChapin, Ashley A.
dc.contributor.mitauthorBarch, Mariya
dc.contributor.mitauthorJasanoff, Alan Pradip
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDesai, Mitul; Slusarczyk, Adrian L.; Chapin, Ashley; Barch, Mariya; Jasanoff, Alanen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7472-5480
dc.identifier.orcidhttps://orcid.org/0000-0001-9307-9878
dc.identifier.orcidhttps://orcid.org/0000-0002-2834-6359
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record