MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Internal-tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front

Author(s)
Kelly, Samuel M; Lermusiaux, Pierre
Thumbnail
DownloadLermusiaux_Internal-tide.pdf (4.744Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Internal tides in the Middle Atlantic Bight region are found to be noticeably influenced by the presence of the shelfbreak front and the Gulf Stream, using a combination of observations, equations, and data-driven model simulations. To identify the dominant interactions of these waves with subtidal flows, vertical-mode momentum and energy partial differential equations are derived for small-amplitude waves in a horizontally and vertically sheared mean flow and in a horizontally and vertically variable density field. First, the energy balances are examined in idealized simulations with mode-1 internal tides propagating across and along the Gulf Stream. Next, the fully nonlinear dynamics of regional tide-mean-flow interactions are simulated with a primitive-equation model, which incorporates realistic summer-mesoscale features and atmospheric forcing. The shelfbreak front, which has horizontally variable stratification, decreases topographic internal-tide generation by about 10% and alters the wavelengths and arrival times of locally generated mode-1 internal tides on the shelf and in the abyss. The (sub)mesoscale variability at the front and on the shelf, as well as the summer stratification itself, also alter internal-tide propagation. The Gulf Stream produces anomalous regions of math formula(20 mW m−2) mode-1 internal-tide energy-flux divergence, which are explained by tide-mean-flow terms in the mode-1 energy balance. Advection explains most tide-mean-flow interaction, suggesting that geometric wave theory explains mode-1 reflection and refraction at the Gulf Stream. Geometric theory predicts that offshore-propagating mode-1 internal tides that strike the Gulf Stream at oblique angles (more than thirty degrees from normal) are reflected back to the coastal ocean, preventing their radiation into the central North Atlantic.
Date issued
2016-08
URI
http://hdl.handle.net/1721.1/107645
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Geophysical Research: Oceans
Publisher
American Geophysical Union (AGU)
Citation
Kelly, Samuel M., and Pierre F. J. Lermusiaux. “Internal-Tide Interactions with the Gulf Stream and Middle Atlantic Bight Shelfbreak Front.” Journal of Geophysical Research: Oceans 121, no. 8 (August 2016): 6271–6294.
Version: Final published version
ISSN
21699275

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.