MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review

Author(s)
Mhaskar, Hrushikesh; Rosasco, Lorenzo; Miranda, Brando; Liao, Qianli; Poggio, Tomaso A
Thumbnail
Download11633_2017_Article_1054.pdf (1.675Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The paper reviews and extends an emerging body of theoretical results on deep learning including the conditions under which it can be exponentially better than shallow learning. A class of deep convolutional networks represent an important special case of these conditions, though weight sharing is not the main reason for their exponential advantage. Implications of a few key theorems are discussed, together with new results, open problems and conjectures.
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/107679
Department
Center for Brains, Minds and Machines at MIT; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; McGovern Institute for Brain Research at MIT
Journal
International Journal of Automation and Computing
Publisher
Institute of Automation, Chinese Academy of Sciences
Citation
Poggio, Tomaso, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. “Why and When Can Deep-but Not Shallow-Networks Avoid the Curse of Dimensionality: A Review.” International Journal of Automation and Computing (March 14, 2017).
Version: Author's final manuscript
ISSN
1476-8186
1751-8520

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.