Show simple item record

dc.contributor.authorGeary, Tim C.
dc.contributor.authorLee, Dongkyu
dc.contributor.authorShao-Horn, Yang
dc.contributor.authorAdler, Stuart B.
dc.date.accessioned2017-03-28T13:58:43Z
dc.date.available2017-03-28T13:58:43Z
dc.date.issued2016-07
dc.date.submitted2016-07
dc.identifier.issn0013-4651
dc.identifier.issn1945-7111
dc.identifier.urihttp://hdl.handle.net/1721.1/107745
dc.description.abstractLinear and nonlinear electrochemical impedance spectroscopy (EIS, NLEIS) were used to study 20 nm thin film La[subscript 0.6]Sr[subscript 0.4]Co[subscript 0.2]Fe[subscript 0.8]O[subscript 3][subscript -][delta] (LSCF-6428) electrodes at 600°C in oxygen environments. LSCF films were epitaxially deposited on single crystal yttria-stabilized zirconia (YSZ) with a 5 nm gadolinium-doped ceria (GDC) protective interlayer. Impedance measurements reveal an oxygen storage capacity similar to independent thermogravimetry measurements on semi-porous pellets. However, the impedance data fail to obey a homogeneous semiconductor point-defect model. Two consistent scenarios were considered: a homogeneous film with non-ideal thermodynamics (constrained by thermogravimetry measurements), or an inhomogeneous film (constrained by a semiconductor point-defect model with a Sr maldistribution). The latter interpretation suggests that gradients in Sr composition would have to extend beyond the space-charge region of the gas-electrode interface. While there is growing evidence supporting an equilibrium Sr segregation at the LSCF surface monolayer, a long-range, non-equilibrium Sr stratification caused by electrode processing conditions offers a possible explanation for the large volume of highly reducible LSCF. Additionally, all thin films exhibited fluctuations in both linear and nonlinear impedance over the hundred-hour measurement period. This behavior is inconsistent with changes solely in the surface rate coefficient and possibly caused by variations in the surface thermodynamics over exposure time.en_US
dc.description.sponsorshipNational Energy Technology Laboratory (U.S.) Solid State Energy Conversion Alliance (SECA) Core Technology Program (Award Number DEFE0009435)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Science. Scientific User Facilities Division (grant CNMS2013-292)en_US
dc.language.isoen_US
dc.publisherElectrochemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1149/2.0851609jesen_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceElectrochemical Societyen_US
dc.titleNonlinear Impedance Analysis of La[subscript 0.4]Sr[subscript 0.6]Co[subscript 0.2]Fe[subscript0.8]O[subscript3-[subscript[delta]] Thin film Oxygen Electrodesen_US
dc.typeArticleen_US
dc.identifier.citationGeary, Tim C., Dongkyu Lee, Yang Shao-Horn, and Stuart B. Adler. “Nonlinear Impedance Analysis of La[subscript 0.6]Sr[subscript 0.4]Co[subscript 0.2]Fe[subscript 0.8]O[subscript 3][subscript -][delta] Thin Film Oxygen Electrodes.” Journal of The Electrochemical Society 163, no. 9 (2016): F1107–F1114.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorLee, Dongkyu
dc.contributor.mitauthorShao-Horn, Yang
dc.relation.journalJournal of The Electrochemical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGeary, Tim C.; Lee, Dongkyu; Shao-Horn, Yang; Adler, Stuart B.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record