MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two formulas for the BR multiplicity

Author(s)
Kleiman, Steven L.
Thumbnail
DownloadKleiman_Two formulas.pdf (130.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We prove a projection formula, expressing a relative Buchsbaum–Rim multiplicity in terms of corresponding ones over a module-finite algebra of pure degree, generalizing an old formula for the ordinary (Samuel) multiplicity. Our proof is simple in spirit: after the multiplicities are expressed as sums of intersection numbers, the desired formula results from two projection formulas, one for cycles and another for Chern classes. Similarly, but without using any projection formula, we prove an expansion formula, generalizing the additivity formula for the ordinary multiplicity, a case of the associativity formula.
Date issued
2016-07
URI
http://hdl.handle.net/1721.1/107775
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
ANNALI DELL'UNIVERSITA' DI FERRARA
Publisher
Springer-Verlag
Citation
Kleiman, Steven L. “Two Formulas for the BR Multiplicity.” ANNALI DELL’UNIVERSITA’ DI FERRARA (2016): n. pag.
Version: Author's final manuscript
ISSN
0430-3202
1827-1510

Collections
  • MIT Open Access Articles
  • Works by Steven L. Kleiman

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.