MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gaussian functional regression for linear partial differential equations

Author(s)
Nguyen, Ngoc Cuong; Peraire, Jaime
Thumbnail
Downloadfunctional_Gaussian_processes_revised.pdf (2.191Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
In this paper, we present a new statistical approach to the problem of incorporating experimental observations into a mathematical model described by linear partial differential equations (PDEs) to improve the prediction of the state of a physical system. We augment the linear PDE with a functional that accounts for the uncertainty in the mathematical model and is modeled as a Gaussian process. This gives rise to a stochastic PDE which is characterized by the Gaussian functional. We develop a Gaussian functional regression method to determine the posterior mean and covariance of the Gaussian functional, thereby solving the stochastic PDE to obtain the posterior distribution for our prediction of the physical state. Our method has the following features which distinguish itself from other regression methods. First, it incorporates both the mathematical model and the observations into the regression procedure. Second, it can handle the observations given in the form of linear functionals of the field variable. Third, the method is non-parametric in the sense that it provides a systematic way to optimally determine the prior covariance operator of the Gaussian functional based on the observations. Fourth, it provides the posterior distribution quantifying the magnitude of uncertainty in our prediction of the physical state. We present numerical results to illustrate these features of the method and compare its performance to that of the standard Gaussian process regression.
Date issued
2015-01
URI
http://hdl.handle.net/1721.1/107776
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Computer Methods in Applied Mechanics and Engineering
Publisher
Elsevier
Citation
Nguyen, N.C., and J. Peraire. “Gaussian Functional Regression for Linear Partial Differential Equations.” Computer Methods in Applied Mechanics and Engineering 287 (2015): 69–89.
Version: Author's final manuscript
ISSN
0045-7825

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.