MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tuned and non-Higgsable U(1)s in F-theory

Author(s)
Wang, Yinan
Thumbnail
Download13130_2017_Article_5752.pdf (900.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We study the tuning of U(1) gauge fields in F-theory models on a base of general dimension. We construct a formula that computes the change in Weierstrass moduli when such a U(1) is tuned, based on the Morrison-Park form of a Weierstrass model with an additional rational section. Using this formula, we propose the form of “minimal tuning” on any base, which corresponds to the case where the decrease in the number of Weierstrass moduli is minimal. Applying this result, we discover some universal features of bases with non-Higgsable U(1)s. Mathematically, a generic elliptic fibration over such a base has additional rational sections. Physically, this condition implies the existence of U(1) gauge group in the low-energy supergravity theory after compactification that cannot be Higgsed away. In particular, we show that the elliptic Calabi-Yau manifold over such a base has a small number of complex structure moduli. We also suggest that non-Higgsable U(1)s can never appear on any toric bases. Finally, we construct the first example of a threefold base with non-Higgsable U(1)s.
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/107790
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Journal of High Energy Physics
Publisher
Springer Berlin Heidelberg
Citation
Wang, Yi-Nan. “Tuned and Non-Higgsable U(1)s in F-Theory.” Journal of High Energy Physics 2017.3 (2017): n. pag.
Version: Final published version
ISSN
1029-8479

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.