Show simple item record

dc.contributor.authorMontaño, Sherwin P.
dc.contributor.authorRice, Phoebe A.
dc.contributor.authorSauer, Robert T.
dc.contributor.authorBaker, Tania
dc.contributor.authorLing, Lorraine, Ph. D. Massachusetts Institute of Technology
dc.date.accessioned2017-03-31T13:57:24Z
dc.date.available2017-03-31T13:57:24Z
dc.date.issued2015-03
dc.date.submitted2015-03
dc.identifier.issn0022-2836
dc.identifier.urihttp://hdl.handle.net/1721.1/107792
dc.description.abstractATP-dependent protein remodeling and unfolding enzymes are key participants in protein metabolism in all cells. How these often-destructive enzymes specifically recognize target protein complexes is poorly understood. Here, we use the well-studied AAA + unfoldase-substrate pair, Escherichia coli ClpX and MuA transposase, to address how these powerful enzymes recognize target protein complexes. We demonstrate that the final transposition product, which is a DNA-bound tetramer of MuA, is preferentially recognized over the monomeric apo-protein through its multivalent display of ClpX recognition tags. The important peptide tags include one at the C-terminus (“C-tag”) that binds the ClpX pore and a second one (enhancement or “E-tag”) that binds the ClpX N-terminal domain. We construct a chimeric protein to interrogate subunit-specific contributions of these tags. Efficient remodeling of MuA tetramers requires ClpX to contact a minimum of three tags (one C-tag and two or more E-tags), and that these tags are contributed by different subunits within the tetramer. The individual recognition peptides bind ClpX weakly (K[subscript D] > 70 μM) but impart a high-affinity interaction (K[subscript D] ~ 1.0 μM) when combined in the MuA tetramer. When the weak C-tag signal is replaced with a stronger recognition tag, the E-tags become unnecessary and ClpX's preference for the complex over MuA monomers is eliminated. Additionally, because the spatial orientation of the tags is predicted to change during the final step of transposition, this recognition strategy suggests how AAA + unfoldases specifically distinguish the completed “end-stage” form of a particular complex for the ideal biological outcome.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grants GM-49224 and AI-16892)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH Pre-Doctoral Training Grant T32GM007287)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmb.2015.03.008en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleDeciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpXen_US
dc.typeArticleen_US
dc.identifier.citationLing, Lorraine et al. “Deciphering the Roles of Multicomponent Recognition Signals by the AAA + Unfoldase ClpX.” Journal of Molecular Biology 427.18 (2015): 2966–2982.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.mitauthorLing, Lorraine
dc.contributor.mitauthorSauer, Robert T.
dc.contributor.mitauthorBaker, Tania
dc.relation.journalJournal of Molecular Biologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLing, Lorraine; Montaño, Sherwin P.; Sauer, Robert T.; Rice, Phoebe A.; Baker, Tania A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1719-5399
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record