MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

Author(s)
Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi
Thumbnail
DownloadPhysRevC.95.034902.pdf (361.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. This work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1+1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening the equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. The observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/107897
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Laboratory for Nuclear Science
Journal
Physical Review C
Publisher
American Physical Society
Citation
Monnai, Akihiko, Swagato Mukherjee, and Yi Yin. “Phenomenological Consequences of Enhanced Bulk Viscosity near the QCD Critical Point.” Physical Review C 95.3 (2017): n. pag. © 2017 American Physical Society
Version: Final published version
ISSN
2469-9985
2469-9993

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.