MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise

Author(s)
Beau, M.; del Campo, A.; Chenu, Aurelia; Cao, Jianshu
Thumbnail
DownloadPhysRevLett.118.140403.pdf (226.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We introduce a scheme for the quantum simulation of many-body decoherence based on the unitary evolution of a stochastic Hamiltonian. Modulating the strength of the interactions with stochastic processes, we show that the noise-averaged density matrix simulates an effectively open dynamics governed by k-body Lindblad operators. Markovian dynamics can be accessed with white-noise fluctuations; non-Markovian dynamics requires colored noise. The time scale governing the fidelity decay under many-body decoherence is shown to scale as N[superscript -2k] with the system size N. Our proposal can be readily implemented in a variety of quantum platforms including optical lattices, superconducting circuits, and trapped ions.
Date issued
2017-04
URI
http://hdl.handle.net/1721.1/107906
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Chenu, A. et al. “Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise.” Physical Review Letters 118.14 (2017): n. pag. © 2017 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.