Show simple item record

dc.contributor.authorJaques, Natasha Mary
dc.contributor.authorTaylor, Sara Ann
dc.contributor.authorAzaria, Asaph Mordehai Assaf
dc.contributor.authorGhandeharioun, Asma
dc.contributor.authorSano, Akane
dc.contributor.authorPicard, Rosalind W.
dc.date.accessioned2017-04-06T20:22:26Z
dc.date.available2017-04-06T20:22:26Z
dc.date.issued2015-12
dc.date.submitted2015-09
dc.identifier.isbn978-1-4799-9953-8
dc.identifier.issn2156-8111
dc.identifier.urihttp://hdl.handle.net/1721.1/107917
dc.description.abstractIn order to model students' happiness, we apply machine learning methods to data collected from undergrad students monitored over the course of one month each. The data collected include physiological signals, location, smartphone logs, and survey responses to behavioral questions. Each day, participants reported their wellbeing on measures including stress, health, and happiness. Because of the relationship between happiness and depression, modeling happiness may help us to detect individuals who are at risk of depression and guide interventions to help them. We are also interested in how behavioral factors (such as sleep and social activity) affect happiness positively and negatively. A variety of machine learning and feature selection techniques are compared, including Gaussian Mixture Models and ensemble classification. We achieve 70% classification accuracy of self-reported happiness on held-out test data.en_US
dc.description.sponsorshipMIT Media Lab Consortiumen_US
dc.description.sponsorshipRobert Wood Johnson Foundation (Wellbeing Initiative)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01GM105018)en_US
dc.description.sponsorshipSamsung (Firm)en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ACII.2015.7344575en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titlePredicting students' happiness from physiology, phone, mobility, and behavioral dataen_US
dc.typeArticleen_US
dc.identifier.citationJaques, Natasha et al. “Predicting Students’ Happiness from Physiology, Phone, Mobility, and Behavioral Data.” 2015 International Conference on Affective Computing and Intelligent Interaction (ACII) 222–228. © 2017 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorJaques, Natasha Mary
dc.contributor.mitauthorTaylor, Sara Ann
dc.contributor.mitauthorAzaria, Asaph Mordehai Assaf
dc.contributor.mitauthorGhandeharioun, Asma
dc.contributor.mitauthorSano, Akane
dc.contributor.mitauthorPicard, Rosalind W.
dc.relation.journal2015 International Conference on Affective Computing and Intelligent Interaction (ACII)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsJaques, Natasha; Taylor, Sara; Azaria, Asaph; Ghandeharioun, Asma; Sano, Akane; Picard, Rosalinden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8413-9469
dc.identifier.orcidhttps://orcid.org/0000-0003-4133-9230
dc.identifier.orcidhttps://orcid.org/0000-0003-0354-206X
dc.identifier.orcidhttps://orcid.org/0000-0002-8745-0447
dc.identifier.orcidhttps://orcid.org/0000-0003-4484-8946
dc.identifier.orcidhttps://orcid.org/0000-0002-5661-0022
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record