dc.contributor.author | Jaques, Natasha Mary | |
dc.contributor.author | Taylor, Sara Ann | |
dc.contributor.author | Azaria, Asaph Mordehai Assaf | |
dc.contributor.author | Ghandeharioun, Asma | |
dc.contributor.author | Sano, Akane | |
dc.contributor.author | Picard, Rosalind W. | |
dc.date.accessioned | 2017-04-06T20:22:26Z | |
dc.date.available | 2017-04-06T20:22:26Z | |
dc.date.issued | 2015-12 | |
dc.date.submitted | 2015-09 | |
dc.identifier.isbn | 978-1-4799-9953-8 | |
dc.identifier.issn | 2156-8111 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/107917 | |
dc.description.abstract | In order to model students' happiness, we apply machine learning methods to data collected from undergrad students monitored over the course of one month each. The data collected include physiological signals, location, smartphone logs, and survey responses to behavioral questions. Each day, participants reported their wellbeing on measures including stress, health, and happiness. Because of the relationship between happiness and depression, modeling happiness may help us to detect individuals who are at risk of depression and guide interventions to help them. We are also interested in how behavioral factors (such as sleep and social activity) affect happiness positively and negatively. A variety of machine learning and feature selection techniques are compared, including Gaussian Mixture Models and ensemble classification. We achieve 70% classification accuracy of self-reported happiness on held-out test data. | en_US |
dc.description.sponsorship | MIT Media Lab Consortium | en_US |
dc.description.sponsorship | Robert Wood Johnson Foundation (Wellbeing Initiative) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grant R01GM105018) | en_US |
dc.description.sponsorship | Samsung (Firm) | en_US |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/ACII.2015.7344575 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Predicting students' happiness from physiology, phone, mobility, and behavioral data | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Jaques, Natasha et al. “Predicting Students’ Happiness from Physiology, Phone, Mobility, and Behavioral Data.” 2015 International Conference on Affective Computing and Intelligent Interaction (ACII) 222–228. © 2017 IEEE | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Media Laboratory | en_US |
dc.contributor.department | Program in Media Arts and Sciences (Massachusetts Institute of Technology) | en_US |
dc.contributor.mitauthor | Jaques, Natasha Mary | |
dc.contributor.mitauthor | Taylor, Sara Ann | |
dc.contributor.mitauthor | Azaria, Asaph Mordehai Assaf | |
dc.contributor.mitauthor | Ghandeharioun, Asma | |
dc.contributor.mitauthor | Sano, Akane | |
dc.contributor.mitauthor | Picard, Rosalind W. | |
dc.relation.journal | 2015 International Conference on Affective Computing and Intelligent Interaction (ACII) | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Jaques, Natasha; Taylor, Sara; Azaria, Asaph; Ghandeharioun, Asma; Sano, Akane; Picard, Rosalind | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-8413-9469 | |
dc.identifier.orcid | https://orcid.org/0000-0003-4133-9230 | |
dc.identifier.orcid | https://orcid.org/0000-0003-0354-206X | |
dc.identifier.orcid | https://orcid.org/0000-0002-8745-0447 | |
dc.identifier.orcid | https://orcid.org/0000-0003-4484-8946 | |
dc.identifier.orcid | https://orcid.org/0000-0002-5661-0022 | |
mit.license | OPEN_ACCESS_POLICY | en_US |