MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR

Author(s)
Duan, Wentao; Vemuri, Rama S.; Milshtein, Jarrod D.; Laramie, Sydney; Dmello, Rylan D.; Huang, Jinhua; Zhang, Lu; Hu, Dehong; Vijayakumar, M.; Wang, Wei; Liu, Jun; Darling, Robert M.; Thompson, Levi; Smith, Kyle; Moore, Jeffery S.; Wei, Xiaoliang; Brushett, Fikile R; ... Show more Show less
Thumbnail
DownloadBrushett_A symmetric.pdf (1.175Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 Unported licence http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ∼1.7 V and shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, suggesting FTIR as a powerful online battery status sensor. This study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/107941
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Journal of Materials Chemistry A, materials for energy and sustainability
Publisher
Royal Society of Chemistry
Citation
Duan, Wentao et al. “A Symmetric Organic-Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR.” J. Mater. Chem. A 4.15 (2016): 5448–5456. © 2016 The Royal Society of Chemistry
Version: Final published version
ISSN
2050-7488
2050-7496

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.