Show simple item record

dc.contributor.authorBerns, Christoph
dc.contributor.authorKondratiev, Yuri
dc.contributor.authorKozitsky, Yuri
dc.contributor.authorKutovyi, Oleksandr
dc.date.accessioned2017-04-07T21:23:58Z
dc.date.available2017-04-07T21:23:58Z
dc.date.issued2013-11
dc.date.submitted2013-08
dc.identifier.issn1040-7294
dc.identifier.issn1572-9222
dc.identifier.urihttp://hdl.handle.net/1721.1/107985
dc.description.abstractThe dynamics of an infinite system of point particles in ℝ[superscript d], which hop and interact with each other, is described at both micro- and mesoscopic levels. The states of the system are probability measures on the space of configurations of particles. For a bounded time interval [0,T), the evolution of states μ[subscript 0]↦μ[subscript t] is shown to hold in a space of sub-Poissonian measures. This result is obtained by: (a) solving equations for correlation functions, which yields the evolution k[subscript 0]↦k[subscript t], t∈[0,T), in a scale of Banach spaces; (b) proving that each k[subscript t] is a correlation function for a unique measure μ[subscript t]. The mesoscopic theory is based on a Vlasov-type scaling, that yields a mean-field-like approximate description in terms of the particles’ density which obeys a kinetic equation. The latter equation is rigorously derived from that for the correlation functions by the scaling procedure. We prove that the kinetic equation has a unique solution ϱ[subscript t], t∈[0,+∞).en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10884-013-9328-zen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleKawasaki Dynamics in Continuum: Micro- and Mesoscopic Descriptionsen_US
dc.typeArticleen_US
dc.identifier.citationBerns, Christoph, Yuri Kondratiev, Yuri Kozitsky, and Oleksandr Kutoviy. “Kawasaki Dynamics in Continuum: Micro- and Mesoscopic Descriptions.” Journal of Dynamics and Differential Equations 25, no. 4 (November 21, 2013): 1027–1056en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKutovyi, Oleksandr
dc.relation.journalJournal of Dynamics and Differential Equationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T09:38:41Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsBerns, Christoph; Kondratiev, Yuri; Kozitsky, Yuri; Kutoviy, Oleksandren_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record