dc.contributor.author | Berns, Christoph | |
dc.contributor.author | Kondratiev, Yuri | |
dc.contributor.author | Kozitsky, Yuri | |
dc.contributor.author | Kutovyi, Oleksandr | |
dc.date.accessioned | 2017-04-07T21:23:58Z | |
dc.date.available | 2017-04-07T21:23:58Z | |
dc.date.issued | 2013-11 | |
dc.date.submitted | 2013-08 | |
dc.identifier.issn | 1040-7294 | |
dc.identifier.issn | 1572-9222 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/107985 | |
dc.description.abstract | The dynamics of an infinite system of point particles in ℝ[superscript d], which hop and interact with each other, is described at both micro- and mesoscopic levels. The states of the system are probability measures on the space of configurations of particles. For a bounded time interval [0,T), the evolution of states μ[subscript 0]↦μ[subscript t] is shown to hold in a space of sub-Poissonian measures. This result is obtained by: (a) solving equations for correlation functions, which yields the evolution k[subscript 0]↦k[subscript t], t∈[0,T), in a scale of Banach spaces; (b) proving that each k[subscript t] is a correlation function for a unique measure μ[subscript t]. The mesoscopic theory is based on a Vlasov-type scaling, that yields a mean-field-like approximate description in terms of the particles’ density which obeys a kinetic equation. The latter equation is rigorously derived from that for the correlation functions by the scaling procedure. We prove that the kinetic equation has a unique solution ϱ[subscript t], t∈[0,+∞). | en_US |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s10884-013-9328-z | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Springer US | en_US |
dc.title | Kawasaki Dynamics in Continuum: Micro- and Mesoscopic Descriptions | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Berns, Christoph, Yuri Kondratiev, Yuri Kozitsky, and Oleksandr Kutoviy. “Kawasaki Dynamics in Continuum: Micro- and Mesoscopic Descriptions.” Journal of Dynamics and Differential Equations 25, no. 4 (November 21, 2013): 1027–1056 | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Kutovyi, Oleksandr | |
dc.relation.journal | Journal of Dynamics and Differential Equations | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2016-05-23T09:38:41Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s) | |
dspace.orderedauthors | Berns, Christoph; Kondratiev, Yuri; Kozitsky, Yuri; Kutoviy, Oleksandr | en_US |
dspace.embargo.terms | N | en_US |
mit.license | PUBLISHER_CC | en_US |