Show simple item record

dc.contributor.authorSharir, Micha
dc.contributor.authorSolomon, Noam
dc.contributor.authorKalia, Saarik K.
dc.contributor.authorYang, Ben
dc.date.accessioned2017-04-07T21:36:54Z
dc.date.available2017-04-07T21:36:54Z
dc.date.issued2016-02
dc.date.submitted2016-01
dc.identifier.issn0179-5376
dc.identifier.issn1432-0444
dc.identifier.urihttp://hdl.handle.net/1721.1/107986
dc.description.abstractWe generalize the Szemerédi–Trotter incidence theorem, to bound the number of complete flags in higher dimensions. Specifically, for each i=0,1,…,d−1, we are given a finite set S[subscript i] of i-flats in ℝ[superscript d] or in ℂ[superscript d], and a (complete) flag is a tuple (f[subscript 0],f[subscript 1],…,f[subscript d−1]), where f[subscript i]∈S[subscript i] for each i and f[subscript i]⊂f[subscript i+1] for each i=0,1,…,d−2. Our main result is an upper bound on the number of flags which is tight in the worst case. We also study several other kinds of incidence problems, including (i) incidences between points and lines in ℝ[superscript 3] such that among the lines incident to a point, at most O(1) of them can be coplanar, (ii) incidences with Legendrian lines in ℝ[superscript 3], a special class of lines that arise when considering flags that are defined in terms of other groups, and (iii) flags in ℝ[superscript 3] (involving points, lines, and planes), where no given line can contain too many points or lie on too many planes. The bound that we obtain in (iii) is nearly tight in the worst case. Finally, we explore a group theoretic interpretation of flags, a generalized version of which leads us to new incidence problems.en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00454-016-9759-5en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleGeneralizations of the Szemerédi–Trotter Theoremen_US
dc.typeArticleen_US
dc.identifier.citationKalia, Saarik, Micha Sharir, Noam Solomon, and Ben Yang. “Generalizations of the Szemerédi–Trotter Theorem.” Discrete Comput Geom 55, no. 3 (February 2, 2016): 571–593.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorKalia, Saarik K.
dc.contributor.mitauthorYang, Ben
dc.relation.journalDiscrete & Computational Geometryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:14:22Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsKalia, Saarik; Sharir, Micha; Solomon, Noam; Yang, Benen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0001-9702-4815
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record