MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Infinite random matrix theory, tridiagonal bordered Toeplitz matrices, and the moment problem

Author(s)
Dubbs, Alexander Joseph; Edelman, Alan
Thumbnail
DownloadEdelman article in J Math Phys.pdf (376.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The four major asymptotic level density laws of random matrix theory may all be showcased through their Jacobi parameter representation as having a bordered Toeplitz form. We compare and contrast these laws, completing and exploring their representations in one place. Inspired by the bordered Toeplitz form, we propose an algorithm for the finite moment problem by proposing a solution whose density has a bordered Toeplitz form.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/108030
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Linear Algebra and its Applications
Publisher
Elsevier
Citation
Dubbs, Alexander, and Alan Edelman. “Infinite Random Matrix Theory, Tridiagonal Bordered Toeplitz Matrices, and the Moment Problem.” Linear Algebra and its Applications 467 (2015): 188–201.
Version: Author's final manuscript
ISSN
0024-3795

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.