Show simple item record

dc.contributor.authorSheppard, Micah James
dc.contributor.authorKunjapur, Aditya Mohan
dc.contributor.authorPrather, Kristala L
dc.date.accessioned2017-04-12T18:56:41Z
dc.date.available2017-04-12T18:56:41Z
dc.date.issued2015-11
dc.date.submitted2015-07
dc.identifier.issn1096-7176
dc.identifier.urihttp://hdl.handle.net/1721.1/108077
dc.description.abstractTypical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement.en_US
dc.description.sponsorshipUnited States. Army Research Office (Institute for Collaborative Biotechnologies. Grant W911NF-09-0001)en_US
dc.description.sponsorshipShell Global Solutions (US) Inc.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Science Graduate Fellowship Programen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ymben.2015.10.010en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Prather via Erja Kajosaloen_US
dc.titleModular and selective biosynthesis of gasoline-range alkanesen_US
dc.typeArticleen_US
dc.identifier.citationSheppard, Micah J., Aditya M. Kunjapur, and Kristala L.J. Prather. “Modular and Selective Biosynthesis of Gasoline-Range Alkanes.” Metabolic Engineering 33 (January 2016): 28–40.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.approverPrather, Kristala L. J.en_US
dc.contributor.mitauthorJones, Kristala L.
dc.contributor.mitauthorSheppard, Micah James
dc.contributor.mitauthorKunjapur, Aditya Mohan
dc.relation.journalMetabolic Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSheppard, Micah J.; Kunjapur, Aditya M.; Prather, Kristala L.J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0437-3157
dc.identifier.orcidhttps://orcid.org/0000-0001-6869-9530
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record