Show simple item record

dc.contributor.authorXie, Lisi
dc.contributor.authorZhao, Qing
dc.contributor.authorJensen, Klavs F
dc.contributor.authorKulik, Heather Janine
dc.date.accessioned2017-04-12T19:09:29Z
dc.date.available2017-04-12T19:09:29Z
dc.date.issued2016-01
dc.date.submitted2015-12
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttp://hdl.handle.net/1721.1/108078
dc.description.abstractColloidal quantum dots (QDs) exhibit highly desirable size- and shape-dependent properties for applications from electronic devices to imaging. Indium phosphide QDs have emerged as a primary candidate to more toxic CdSe QDs, but production of InP QDs with the desired properties lags behind other QD materials due to a poor understanding of how to tune the growth process. Using high-temperature ab initio molecular dynamics (AIMD) simulations, we report the first direct observation of early-stage intermediates and subsequent formation of an InP cluster from indium and phosphorus precursors. In our simulations, indium agglomeration precedes formation of In–P bonds. We observe a predominantly intercomplex pathway in which In–P bonds form between one set of precursor copies, and the carboxylate ligand of a second indium precursor in the agglomerated indium abstracts a ligand from the phosphorus precursor. This process produces an indium-rich cluster with structural properties comparable to those in bulk zinc-blende InP crystals. Minimum energy pathway characterization of the AIMD-sampled reaction events confirms these observations and identifies that In–carboxylate dissociation energetics solely determine the barrier along the In–P bond formation pathway, which is lower for intercomplex (13 kcal/mol) than intracomplex (21 kcal/mol) mechanisms. The phosphorus precursor chemistry, on the other hand, controls the thermodynamics of the reaction. Our observations of the different roles of precursors in controlling QD formation strongly suggest that the challenges thus far encountered in InP QD synthesis optimization may be attributed to an overlooked need for a cooperative tuning strategy that simultaneously addresses the chemistry of both indium and phosphorus precursors.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant ECCS- 1449291)en_US
dc.description.sponsorshipBurroughs Welcome Fund (Career Award at the Scientific Interface)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.jpcc.5b12091en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Kuliken_US
dc.titleDirect Observation of Early-Stage Quantum Dot Growth Mechanisms with High-Temperature Ab Initio Molecular Dynamicsen_US
dc.typeArticleen_US
dc.identifier.citationXie, Lisi et al. “Direct Observation of Early-Stage Quantum Dot Growth Mechanisms with High-Temperature Ab Initio Molecular Dynamics.” The Journal of Physical Chemistry C 120.4 (2016): 2472–2483.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverKulik, Heather Jen_US
dc.contributor.mitauthorXie, Lisi
dc.contributor.mitauthorZhao, Qing
dc.contributor.mitauthorJensen, Klavs F
dc.contributor.mitauthorKulik, Heather Janine
dc.relation.journalThe Journal of Physical Chemistry Cen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsXie, Lisi; Zhao, Qing; Jensen, Klavs F.; Kulik, Heather J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4032-8038
dc.identifier.orcidhttps://orcid.org/0000-0002-5535-0513
dc.identifier.orcidhttps://orcid.org/0000-0001-7192-580X
dc.identifier.orcidhttps://orcid.org/0000-0001-9342-0191
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record