MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration

Author(s)
Roehner, Nicholas; Mikkelsen, Tarjei S.; Densmore, Douglas; Woodruff, Lauren B; Gordon, David B; Voigt, Christopher A.; Gorochowski, Thomas Edward; Nicol, Robert; ... Show more Show less
Thumbnail
DownloadWoodruff-2016-Registry in a tube_ multiplexed.pdf (763.9Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
Genetic designs can consist of dozens of genes and hundreds of genetic parts. After evaluating a design, it is desirable to implement changes without the cost and burden of starting the construction process from scratch. Here, we report a two-step process where a large design space is divided into deep pools of composite parts, from which individuals are retrieved and assembled to build a final construct. The pools are built via multiplexed assembly and sequenced using next-generation sequencing. Each pool consists of ∼20 Mb of up to 5000 unique and sequence-verified composite parts that are barcoded for retrieval by PCR. This approach is applied to a 16-gene nitrogen fixation pathway, which is broken into pools containing a total of 55 848 composite parts (71.0 Mb). The pools encompass an enormous design space (1043 possible 23 kb constructs), from which an algorithm-guided 192-member 4.5 Mb library is built. Next, all 1030 possible genetic circuits based on 10 repressors (NOR/NOT gates) are encoded in pools where each repressor is fused to all permutations of input promoters. These demonstrate that multiplexing can be applied to encompass entire design spaces from which individuals can be accessed and evaluated.
Date issued
2016-12
URI
http://hdl.handle.net/1721.1/108126
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Nucleic Acids Research
Publisher
Oxford University Press
Citation
Woodruff, Lauren B. A. et al. “Registry in a Tube: Multiplexed Pools of Retrievable Parts for Genetic Design Space Exploration.” Nucleic Acids Research (2016): gkw1226. © 2016 American Chemical Society
Version: Final published version
ISSN
0305-1048
1362-4962

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.