MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Soft Origami: Classification, Constraint, and Actuation of Highly Compliant Origami Structures

Author(s)
Wheeler, Charles Michael; Culpepper, Martin
Thumbnail
DownloadCulpepper_Soft origami.pdf (1.055Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Herein, we discuss the folding of highly compliant origami structures—“Soft Origami.” There are benefits to be had in folding compliant sheets (which cannot self-guide their motion) rather than conventional rigid origami. Example applications include scaffolds for artificial tissue generation and foldable substrates for flexible electronic assemblies. Highly compliant origami has not been contemplated by existing theory, which treats origami structures largely as rigid or semirigid mechanisms with compliant hinges—“mechanism-reliant origami.” We present a quantitative metric—the origami compliance metric (OCM)—that aids in identifying proper modeling of a homogeneous origami structure based upon the compliance regime it falls into (soft, hybrid, or mechanism-reliant). We discuss the unique properties, applications, and design drivers for practical implementation of Soft Origami. We detail a theory of proper constraint by which an ideal soft structure's number of degrees-of-freedom may be approximated as 3n, where n is the number of vertices of the fold pattern. Buckling and sagging behaviors in very compliant structures can be counteracted with the application of tension; we present a method for calculating the tension force required to reduce sagging error below a user-prescribed value. Finally, we introduce a concept for a scalable process in which a few actuators and stretching membranes may be used to simultaneously fold many origami substructures that share common degrees-of-freedom.
Date issued
2016-05
URI
http://hdl.handle.net/1721.1/108128
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Mechanisms and Robotics
Publisher
ASME International
Citation
Wheeler, Charles M., and Martin L. Culpepper. “Soft Origami: Classification, Constraint, and Actuation of Highly Compliant Origami Structures.” Journal of Mechanisms and Robotics 8, no. 5 (May 4, 2016): 051012. © 2016 ASME The American Society of Mechanical Engineers
Version: Final published version
ISSN
1942-4302

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.