Show simple item record

dc.contributor.authorSledzinska, M.
dc.contributor.authorSotomayor Torres, C. M.
dc.contributor.authorAlvarado-Gil, J. J.
dc.contributor.authorDuncan, Ryan Andrew
dc.contributor.authorZeng, Lingping
dc.contributor.authorLu, Zhengmao
dc.contributor.authorVega-Flick, Alejandro
dc.contributor.authorEliason, Jeffrey Kristian
dc.contributor.authorCuffe, John
dc.contributor.authorJohnson, Jeremiah A.
dc.contributor.authorPeraud, Jean-Philippe Michel
dc.contributor.authorMaznev, Alexei
dc.contributor.authorWang, Evelyn
dc.contributor.authorChen, Gang
dc.contributor.authorNelson, Keith Adam
dc.date.accessioned2017-04-13T20:38:59Z
dc.date.available2017-04-13T20:38:59Z
dc.date.issued2016-12
dc.date.submitted2016-10
dc.identifier.issn2158-3226
dc.identifier.urihttp://hdl.handle.net/1721.1/108149
dc.description.abstractStudying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both “solid” and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (DE-SC0001299)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (DE-FG02-09ER46577)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4968610en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Institute of Physics (AIP)en_US
dc.titleThermal transport in suspended silicon membranes measured by laser-induced transient gratingsen_US
dc.typeArticleen_US
dc.identifier.citationVega-Flick, A. et al. “Thermal Transport in Suspended Silicon Membranes Measured by Laser-Induced Transient Gratings.” AIP Advances 6.12 (2016): 121903.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorDuncan, Ryan Andrew
dc.contributor.mitauthorZeng, Lingping
dc.contributor.mitauthorLu, Zhengmao
dc.contributor.mitauthorVega-Flick, Alejandro
dc.contributor.mitauthorEliason, Jeffrey Kristian
dc.contributor.mitauthorCuffe, John
dc.contributor.mitauthorJohnson, Jeremiah A.
dc.contributor.mitauthorPeraud, Jean-Philippe Michel
dc.contributor.mitauthorMaznev, Alexei
dc.contributor.mitauthorWang, Evelyn
dc.contributor.mitauthorChen, Gang
dc.contributor.mitauthorNelson, Keith Adam
dc.relation.journalAIP Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsVega-Flick, A.; Duncan, R. A.; Eliason, J. K.; Cuffe, J.; Johnson, J. A.; Peraud, J.-P. M.; Zeng, L.; Lu, Z.; Maznev, A. A.; Wang, E. N.; Alvarado-Gil, J. J.; Sledzinska, M.; Sotomayor Torres, C. M.; Chen, G.; Nelson, K. A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8574-6033
dc.identifier.orcidhttps://orcid.org/0000-0001-8051-5378
dc.identifier.orcidhttps://orcid.org/0000-0002-5938-717X
dc.identifier.orcidhttps://orcid.org/0000-0001-9157-6491
dc.identifier.orcidhttps://orcid.org/0000-0001-9070-6231
dc.identifier.orcidhttps://orcid.org/0000-0001-7045-1200
dc.identifier.orcidhttps://orcid.org/0000-0002-3968-8530
dc.identifier.orcidhttps://orcid.org/0000-0001-7804-5418
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record