Show simple item record

dc.contributor.authorRein, Michael
dc.contributor.authorLevy, Etgar Claude
dc.contributor.authorGumennik, Alexander
dc.contributor.authorAbouraddy, Ayman F
dc.contributor.authorJoannopoulos, John
dc.contributor.authorFink, Yoel
dc.date.accessioned2017-04-13T21:18:59Z
dc.date.available2017-04-13T21:18:59Z
dc.date.issued2016-10
dc.date.submitted2016-08
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/108152
dc.description.abstractFibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ∼10⁴ self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (DMR-1419807)en_US
dc.description.sponsorshipUnited States. Army Research Office. Institute for Soldier Nanotechnologies (contract number W911NF-13-D-0001)en_US
dc.description.sponsorshipUnited States. Air Force Medical Serviceen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms12807en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleSelf-assembled fibre optoelectronics with discrete translational symmetryen_US
dc.typeArticleen_US
dc.identifier.citationRein, Michael, Etgar Levy, Alexander Gumennik, Ayman F. Abouraddy, John Joannopoulos, and Yoel Fink. “Self-Assembled Fibre Optoelectronics with Discrete Translational Symmetry.” Nature Communications 7 (October 4, 2016): 12807.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorRein, Michael
dc.contributor.mitauthorLevy, Etgar Claude
dc.contributor.mitauthorGumennik, Alexander
dc.contributor.mitauthorAbouraddy, Ayman F
dc.contributor.mitauthorJoannopoulos, John
dc.contributor.mitauthorFink, Yoel
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F.; Joannopoulos, John; Fink, Yoelen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7522-0233
dc.identifier.orcidhttps://orcid.org/0000-0002-7973-1716
dc.identifier.orcidhttps://orcid.org/0000-0002-3994-4047
dc.identifier.orcidhttps://orcid.org/0000-0002-7244-3682
dc.identifier.orcidhttps://orcid.org/0000-0001-9752-2283
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record