Strengthened Monotonicity of Relative Entropy via Pinched Petz Recovery Map
Author(s)
Sutter, David; Tomamichel, Marco; Harrow, Aram W
DownloadStrengthened monotonicity.pdf (231.5Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
The quantum relative entropy between two states satisfies a monotonicity property meaning that applying the same quantum channel to both states can never increase their relative entropy. It is known that this inequality is only tight when there is a recovery map that exactly reverses the effects of the quantum channel on both states. In this paper, we strengthen this inequality by showing that the difference of relative entropies is bounded below by the measured relative entropy between the first state and a recovered state from its processed version. The recovery map is a convex combination of rotated Petz recovery maps and perfectly reverses the quantum channel on the second state. As a special case, we reproduce recent lower bounds on the conditional mutual information, such as the one proved by Fawzi and Renner. Our proof only relies on the elementary properties of pinching maps and the operator logarithm.
Date issued
2016-03Department
Massachusetts Institute of Technology. Department of PhysicsJournal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Sutter, David; Tomamichel, Marco and Harrow, Aram W. “Strengthened Monotonicity of Relative Entropy via Pinched Petz Recovery Map.” IEEE Transactions on Information Theory 62, no. 5 (May 2016): 2907–2913.
Version: Author's final manuscript
ISSN
0018-9448
1557-9654