MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

GROWTH RATE OF THE TIDAL p-MODE g-MODE INSTABILITY IN COALESCING BINARY NEUTRON STARS

Author(s)
Weinberg, Nevin N.
Thumbnail
DownloadWeinberg-2016-GROWTH RATE OF THE T.pdf (3.002Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We recently described an instability due to the nonlinear coupling of p-modes to g-modes and, as an application, we studied the stability of the tide in coalescing binary neutron stars. Although we found that the tide is p–g unstable early in the inspiral and rapidly drives modes to large energies, our analysis only accounted for three-mode interactions. Venumadhav et al. showed that four-mode interactions must also be accounted for as they enter into the analysis at the same order. They found a near-exact cancellation between three- and four-mode interactions and concluded that while the tide in binary neutron stars can be p–g unstable, the growth rates are not fast enough to impact the gravitational wave signal. Their analysis assumes that the linear tide is incompressible, which is true of the static linear tide (the m = 0 harmonic) but not the non-static linear tide (m = ±2). Here we account for the compressibility of the linear tide and find that three- and four-mode interactions no longer cancel. As a result, we find that the instability can rapidly drive modes to significant energies well before the binary merges. We also show that linear damping interferes with the cancellation and may further enhance the growth rates. The early onset of the instability (at gravitational wave frequencies ≈50 Hz) and the large number of rapidly growing modes suggest that the instability could impact the gravitational wave signal. Assessing its impact will require an understanding of how the instability saturates and is left to future work.
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/108320
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Astrophysical Journal
Publisher
IOP Publishing
Citation
Weinberg, Nevin N. “GROWTH RATE OF THE TIDALp-MODEg-MODE INSTABILITY IN COALESCING BINARY NEUTRON STARS.” The Astrophysical Journal 819, no. 2 (March 3, 2016): 109. © 2016 The American Astronomical Society
Version: Final published version
ISSN
1538-4357
0004-637X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.