MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanochemically Responsive Viscoelastic Elastomers

Author(s)
Takaffoli, Mahdi; Zhang, Teng; Parks, David Moore; Zhao, Xuanhe
Thumbnail
DownloadMechanochemically Responsive.pdf (1.047Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Mechanochemically responsive (MCR) polymers have been designed to possess unconventional properties such as changing colors, self-healing, and releasing catalysts under deformation. These properties of MCR polymers stem from a class of molecules, referred to as mechanophores, whose chemical reactions can be controlled by mechanical forces. Although extensive studies have been devoted to the syntheses of MCR polymers by incorporating various mechanophores into polymer networks, the intricate interactions between mechanical forces and chemical reactions in MCR polymers across multiple length and time scales are still not well understood. In this paper, we focus on mechanochemical responses in viscoelastic elastomers and develop a theoretical model to characterize the coupling between viscoelasticity and chemical reactions of MCR elastomers. We show that the kinetics of viscoelasticity and mechanophore reactions introduce different time scales into the MCR elastomers. The model can consistently represent experimental data on both mechanical properties and chemical reactions of MCR viscoelastic elastomers. In particular, we explain recent experimental observations on the increasing chemical activation during stress relaxation of MCR elastomers, which cannot be explained with existing models. The proposed model provides a theoretical foundation for the design of future MCR polymers with desirable properties.
Date issued
2016-05
URI
http://hdl.handle.net/1721.1/108340
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Applied Mechanics
Publisher
ASME International
Citation
Takaffoli, Mahdi; Zhang, Teng; Parks, David and Zhao, Xuanhe. “Mechanochemically Responsive Viscoelastic Elastomers.” Journal of Applied Mechanics 83, no. 7 (May 9, 2016): 071007. © 2016 ASME
Version: Final published version
ISSN
0021-8936

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.