Electron viscosity, current vortices and negative nonlocal resistance in graphene
Author(s)
Levitov, Leonid; Falkovich, Gregory
DownloadElectron viscosity.pdf (926.2Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Quantum-critical strongly correlated electron systems are predicted to feature universal collision-dominated transport resembling that of viscous fluids. However, investigation of these phenomena has been hampered by the lack of known macroscopic signatures of electron viscosity. Here we identify vorticity as such a signature and link it with a readily verifiable striking macroscopic d.c. transport behaviour. Produced by the viscous flow, vorticity can drive electric current against an applied field, resulting in a negative nonlocal voltage. We argue that the latter may play the same role for the viscous regime as zero electrical resistance does for superconductivity. Besides offering a diagnostic that distinguishes viscous transport from ohmic currents, the sign-changing electrical response affords a robust tool for directly measuring the viscosity-to-resistivity ratio. A strongly interacting electron–hole plasma in high-mobility graphene affords a unique link between quantum-critical electron transport and the wealth of fluid mechanics phenomena.
Date issued
2016-02Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Nature Physics
Publisher
Nature Publishing Group
Citation
Levitov, Leonid and Falkovich, Gregory. “Electron Viscosity, Current Vortices and Negative Nonlocal Resistance in Graphene.” Nature Physics 12, no. 7 (February 22, 2016): 672–676. © 2016 Macmillan Publishers Limited, part of Springer Nature
Version: Author's final manuscript
ISSN
1745-2473
1745-2481