MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Symplectic and Poisson geometry on b-manifolds

Author(s)
Guillemin, Victor W; Miranda, Eva; Pissarra Pires, Ana Rita
Thumbnail
DownloadGuillemin_Symplectic and.pdf (338.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Let M2nM2n be a Poisson manifold with Poisson bivector field Π. We say that M is b -Poisson if the map Πn:M→Λ2n(TM)Πn:M→Λ2n(TM) intersects the zero section transversally on a codimension one submanifold Z⊂MZ⊂M. This paper will be a systematic investigation of such Poisson manifolds. In particular, we will study in detail the structure of (M,Π)(M,Π) in the neighborhood of Z and using symplectic techniques define topological invariants which determine the structure up to isomorphism. We also investigate a variant of de Rham theory for these manifolds and its connection with Poisson cohomology.
Date issued
2017-04-21
URI
http://hdl.handle.net/1721.1/108365
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Advances in Mathematics
Publisher
Elsevier
Citation
Guillemin, Victor; Miranda, Eva and Pires, Ana Rita. “Symplectic and Poisson Geometry on b-Manifolds.” Advances in Mathematics 264 (October 2014): 864–896. © 2014 Elsevier Inc
Version: Original manuscript
ISSN
1090-2082
0001-8708

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.