MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seismic sparse-spike deconvolution via Toeplitz-sparse matrix factorization

Author(s)
Wang, Lingling; Zhao, Qian; Gao, Jinghuai; Xu, Zongben; Jiang, Xiudi; Fehler, Michael; ... Show more Show less
Thumbnail
DownloadWang-2016-Seismic sparse.pdf (4.605Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We have developed a new sparse-spike deconvolution (SSD) method based on Toeplitz-sparse matrix factorization (TSMF), a bilinear decomposition of a matrix into the product of a Toeplitz matrix and a sparse matrix, to address the problems of lateral continuity, effects of noise, and wavelet estimation error in SSD. Assuming the convolution model, a constant source wavelet, and the sparse reflectivity, a seismic profile can be considered as a matrix that is the product of a Toeplitz wavelet matrix and a sparse reflectivity matrix. Thus, we have developed an algorithm of TSMF to simultaneously deconvolve the seismic matrix into a wavelet matrix and a reflectivity matrix by alternatively solving two inversion subproblems related to the Toeplitz wavelet matrix and sparse reflectivity matrix, respectively. Because the seismic wavelet is usually compact and smooth, the fused Lasso was used to constrain the elements in the Toeplitz wavelet matrix. Moreover, due to the limitations of computer memory, large seismic data sets were divided into blocks, and the average of the source wavelets deconvolved from these blocks via TSMF-based SSD was used as the final estimation of the source wavelet for all blocks to deconvolve the reflectivity; thus, the lateral continuity of the seismic data can be maintained. The advantages of the proposed deconvolution method include using multiple traces to reduce the effect of random noise, tolerance to errors in the initial wavelet estimation, and the ability to preserve the complex structure of the seismic data without using any lateral constraints. Our tests on the synthetic seismic data from the Marmousi2 model and a section of field seismic data demonstrate that the proposed method can effectively derive the wavelet and reflectivity simultaneously from band-limited data with appropriate lateral coherence, even when the seismic data are contaminated by noise and the initial wavelet estimation is inaccurate.
Date issued
2016-04
URI
http://hdl.handle.net/1721.1/108373
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Earth Resources Laboratory
Journal
Geophysics
Publisher
Society of Exploration Geophysicists
Citation
Wang, Lingling, Qian Zhao, Jinghuai Gao, Zongben Xu, Michael Fehler, and Xiudi Jiang. “Seismic Sparse-Spike Deconvolution via Toeplitz-Sparse Matrix Factorization.” GEOPHYSICS 81, no. 3 (April 2016): V169–V182. © 2016 Society of Exploration Geophysicists
Version: Final published version
ISSN
0016-8033
1942-2156

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.