Show simple item record

dc.contributor.authorHuang, Jinhua
dc.contributor.authorPan, Baofei
dc.contributor.authorDuan, Wentao
dc.contributor.authorWei, Xiaoliang
dc.contributor.authorAssary, Rajeev S.
dc.contributor.authorSu, Liang
dc.contributor.authorCheng, Lei
dc.contributor.authorLiao, Chen
dc.contributor.authorFerrandon, Magali S.
dc.contributor.authorWang, Wei
dc.contributor.authorZhang, Zhengcheng
dc.contributor.authorBurrell, Anthony K.
dc.contributor.authorCurtiss, Larry A.
dc.contributor.authorShkrob, Ilya A.
dc.contributor.authorMoore, Jeffrey S.
dc.contributor.authorZhang, Lu
dc.contributor.authorBrushett, Fikile R
dc.date.accessioned2017-04-24T19:11:44Z
dc.date.available2017-04-24T19:11:44Z
dc.date.issued2016-08
dc.date.submitted2016-06
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/108381
dc.description.abstractIn advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences. Chemical Sciences, Geosciences, & Biosciences Division (Contract DE-AC02-06CH11357)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep32102en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleThe lightest organic radical cation for charge storage in redox flow batteriesen_US
dc.typeArticleen_US
dc.identifier.citationHuang, Jinhua et al. “The Lightest Organic Radical Cation for Charge Storage in Redox Flow Batteries.” Scientific Reports 6.1 (2016): n. pag. © 2017 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorBrushett, Fikile R
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHuang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S.; Su, Liang; Brushett, Fikile R.; Cheng, Lei; Liao, Chen; Ferrandon, Magali S.; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K.; Curtiss, Larry A.; Shkrob, Ilya A.; Moore, Jeffrey S.; Zhang, Luen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7361-6637
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record