Show simple item record

dc.contributor.authorMehta, Dhagash
dc.contributor.authorMolzahn, Daniel K.
dc.contributor.authorTuritsyn, Konstantin
dc.date.accessioned2017-04-25T13:46:32Z
dc.date.available2017-04-25T13:46:32Z
dc.date.issued2016-08
dc.date.submitted2016-07
dc.identifier.isbn978-1-4673-8682-1
dc.identifier.urihttp://hdl.handle.net/1721.1/108392
dc.description.abstractThe power flow equations are at the core of most of the computations for designing and operating electric grids. This system of multivariate nonlinear equations relate the power injections and voltages in an electric power system. A plethora of methods have been devised to solve these equations, from Newton-based methods to homotopy continuation and other optimization-based methods. Although many of these methods often efficiently find a high-voltage, stable solution, challenges remain for finding low-voltage solutions, which play significant roles in certain stability-related computations. While we do not claim to have exhausted the existing literature on all related methods, this tutorial paper introduces some of the recent advances in power flow solution methods to the wider power systems community as well as bringing attention from the computational mathematics and optimization communities to power systems problems. After briefly reviewing some of the traditional computational methods used to solve the power flow equations, we focus on three emerging methods: the numerical polynomial homotopy continuation method, Gröbner basis techniques, and moment/sum-of-squares relaxations using semidefinite programming. In passing, we also emphasize the importance of an upper bound on the number of solutions of the power flow equations and review the current status of research in this direction.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ACC.2016.7525170en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleRecent advances in computational methods for the power flow equationsen_US
dc.typeArticleen_US
dc.identifier.citationMehta, Dhagash, Daniel K. Molzahn, and Konstantin Turitsyn. “Recent Advances in Computational Methods for the Power Flow Equations.” 2016 American Control Conference, 6-9 July 2016, Boston, MA, USA, IEEE, 2016.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorTuritsyn, Konstantin
dc.relation.journalProceedings of the 2016 American Control Conference (ACC)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMehta, Dhagash; Molzahn, Daniel K.; Turitsyn, Konstantinen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7997-8962
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record