MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A New Event Builder for CMS Run II

Author(s)
Darlea, G.-L.; Gomez-Ceballos, Guillelmo; Paus, Christoph M. E.; Sumorok, Konstanty C; Veverka, Jan
Thumbnail
DownloadA new event builder.pdf (1.723Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 Unported license http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbps Infiniband FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. We present performance measurements from small-scale prototypes and from the full-scale production system.
Date issued
2015-04
URI
http://hdl.handle.net/1721.1/108415
Department
Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Laboratory for Nuclear Science
Journal
Journal of Physics: Conference Series
Publisher
IOP Publishing
Citation
Albertsson, K. et al. "A New Event Builder for CMS Run II." Journal of Physics: Conference Series, IOP Publishing 664 (2015): 082035. © 2017 IOP Publishing
Version: Final published version
ISSN
1742-6588
1742-6596

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.