Show simple item record

dc.contributor.authorZhang, Zheng
dc.contributor.authorWeng, Tsui-Wei
dc.contributor.authorDaniel, Luca
dc.date.accessioned2017-04-26T15:29:29Z
dc.date.available2017-04-26T15:29:29Z
dc.date.issued2016-06
dc.date.submitted2016-05
dc.identifier.isbn978-1-5090-0349-5
dc.identifier.urihttp://hdl.handle.net/1721.1/108417
dc.description.abstractStochastic spectral methods have become a popular technique to quantify the uncertainties of nano-scale devices and circuits. They are much more efficient than Monte Carlo for certain design cases with a small number of random parameters. However, their computational cost significantly increases as the number of random parameters increases. This paper presents a big-data approach to solve high-dimensional uncertainty quantification problems. Specifically, we simulate integrated circuits and MEMS at only a small number of quadrature samples; then, a huge number of (e.g., 1.5×1027) solution samples are estimated from the available small-size (e.g., 500) solution samples via a low-rank and tensor-recovery method. Numerical results show that our algorithm can easily extend the applicability of tensor-product stochastic collocation to IC and MEMS problems with over 50 random parameters, whereas the traditional algorithm can only handle several random parameters.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/SaPIW.2016.7496314en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Daniel via Phoebe Ayersen_US
dc.titleA big-data approach to handle process variations: Uncertainty quantification by tensor recoveryen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Zheng, Tsui-Wei Weng, and Luca Daniel. “A Big-Data Approach to Handle Process Variations: Uncertainty Quantification by Tensor Recovery.” 2016 IEEE 20th Workshop on Signal and Power Integrity (SPI), 8-11 May 2016, Turin Italy, IEEE, 2016.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.approverDaniel, Lucaen_US
dc.contributor.mitauthorZhang, Zheng
dc.contributor.mitauthorWeng, Tsui-Wei
dc.contributor.mitauthorDaniel, Luca
dc.relation.journalProceedings of the 2016 IEEE 20th Workshop on Signal and Power Integrity (SPI)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsZhang, Zheng; Weng, Tsui-Wei; Daniel, Lucaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7111-0499
dc.identifier.orcidhttps://orcid.org/0000-0002-5880-3151
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record