Show simple item record

dc.contributor.authorOh, Coyin
dc.contributor.authorFraenkel, Ernest
dc.contributor.authorGosline, Sara Calafell
dc.date.accessioned2017-04-28T20:39:31Z
dc.date.available2017-04-28T20:39:31Z
dc.date.issued2014-11
dc.date.submitted2014-09
dc.identifier.issn1367-4803
dc.identifier.issn1460-2059
dc.identifier.urihttp://hdl.handle.net/1721.1/108517
dc.description.abstractMotivation: High-throughput datasets such as genetic screens, mRNA expression assays and global phospho-proteomic experiments are often difficult to interpret due to inherent noise in each experimental system. Computational tools have improved interpretation of these datasets by enabling the identification of biological processes and pathways that are most likely to explain the measured results. These tools are primarily designed to analyse data from a single experiment (e.g. drug treatment versus control), creating a need for computational algorithms that can handle heterogeneous datasets across multiple experimental conditions at once. Summary: We introduce SAMNetWeb, a web-based tool that enables functional enrichment analysis and visualization of high-throughput datasets. SAMNetWeb can analyse two distinct data types (e.g. mRNA expression and global proteomics) simultaneously across multiple experimental systems to identify pathways activated in these experiments and then visualize the pathways in a single interaction network. Through the use of a multi-commodity flow based algorithm that requires each experiment ‘share’ underlying protein interactions, SAMNetWeb can identify distinct and common pathways across experiments. Availability and implementation: SAMNetWeb is freely available at http://fraenkel.mit.edu/samnetweb.en_US
dc.description.sponsorshipUnited States. National Institutes of Health (U54CA112967)en_US
dc.description.sponsorshipUnited States. National Institutes of Health (R01GM089903)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DB1-0821391)en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/bioinformatics/btu748en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Fraenkel via Howard Silveren_US
dc.titleSAMNetWeb: identifying condition-specific networks linking signaling and transcriptionen_US
dc.typeArticleen_US
dc.identifier.citationGosline, S. J. C.; Oh, C. and Fraenkel, E.. “SAMNetWeb: Identifying Condition-Specific Networks Linking Signaling and Transcription.” Bioinformatics 31, no. 7 (November 2014): 1124–1126.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.approverFraenkel, Ernesten_US
dc.contributor.mitauthorOh, Coyin
dc.contributor.mitauthorFraenkel, Ernest
dc.contributor.mitauthorGosline, Sara Calafell
dc.relation.journalBioinformaticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGosline, S. J. C.; Oh, C.; Fraenkel, E.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9249-8181
dc.identifier.orcidhttps://orcid.org/0000-0002-6534-4774
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record