Show simple item record

dc.contributor.authorHaider, M.
dc.contributor.authorSteinhauser, D.
dc.contributor.authorGenel, S.
dc.contributor.authorSpringel, V.
dc.contributor.authorHernquist, L.
dc.contributor.authorVogelsberger, Mark
dc.contributor.authorTorrey, Paul A.
dc.date.accessioned2017-05-01T17:47:41Z
dc.date.available2017-05-01T17:47:41Z
dc.date.issued2016-01
dc.date.submitted2015-12
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.urihttp://hdl.handle.net/1721.1/108540
dc.description.abstractObservations at low redshifts thus far fail to account for all of the baryons expected in the Universe according to cosmological constraints. A large fraction of the baryons presumably resides in a thin and warm–hot medium between the galaxies, where they are difficult to observe due to their low densities and high temperatures. Cosmological simulations of structure formation can be used to verify this picture and provide quantitative predictions for the distribution of mass in different large-scale structure components. Here we study the distribution of baryons and dark matter at different epochs using data from the Illustris simulation. We identify regions of different dark matter density with the primary constituents of large-scale structure, allowing us to measure mass and volume of haloes, filaments and voids. At redshift zero, we find that 49 per cent of the dark matter and 23 per cent of the baryons are within haloes more massive than the resolution limit of 2 × 10⁸ M⊙. The filaments of the cosmic web host a further 45 per cent of the dark matter and 46 per cent of the baryons. The remaining 31 per cent of the baryons reside in voids. The majority of these baryons have been transported there through active galactic nuclei feedback. We note that the feedback model of Illustris is too strong for heavy haloes, therefore it is likely that we are overestimating this amount. Categorizing the baryons according to their density and temperature, we find that 17.8 per cent of them are in a condensed state, 21.6 per cent are present as cold, diffuse gas, and 53.9 per cent are found in the state of a warm–hot intergalactic medium.en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/mnras/stw077en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLarge-scale mass distribution in the Illustris simulationen_US
dc.typeArticleen_US
dc.identifier.citationHaider, M.; Steinhauser, D.; Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P. and Hernquist, L. “Large-Scale Mass Distribution in the Illustris Simulation.” Monthly Notices of the Royal Astronomical Society 457, no. 3 (February 24, 2016): 3024–3035.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.mitauthorVogelsberger, Mark
dc.contributor.mitauthorTorrey, Paul A.
dc.relation.journalMonthly Notices of the Royal Astronomical Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHaider, M.; Steinhauser, D.; Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Hernquist, L.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8593-7692
dc.identifier.orcidhttps://orcid.org/0000-0002-5653-0786
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record