Show simple item record

dc.contributor.authorNierenberg, A. M.
dc.contributor.authorTreu, T.
dc.contributor.authorMenci, N.
dc.contributor.authorLu, Y.
dc.contributor.authorTorrey, Paul A.
dc.contributor.authorVogelsberger, Mark
dc.date.accessioned2017-05-01T18:13:50Z
dc.date.available2017-05-01T18:13:50Z
dc.date.issued2016-07
dc.date.submitted2016-03
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.urihttp://hdl.handle.net/1721.1/108545
dc.description.abstractIt is widely believed that the large discrepancy between the observed number of satellite galaxies and the predicted number of dark subhaloes can be resolved via a variety of baryonic effects which suppress star formation in low-mass haloes. Supporting this hypothesis, numerous high-resolution simulations with star formation and associated feedback have been shown to reproduce the satellite luminosity function around Milky Way-mass simulated galaxies at redshift zero. However, a more stringent test of these models is their ability to simultaneously match the satellite luminosity functions of a range of host halo masses and redshifts. In this work, we measure the luminosity function of faint (sub-Small Magellanic Cloud luminosity) satellites around hosts with stellar masses 10.5 < log10M*/M⊙ < 11.5 to an unprecedented redshift of 1.5. This new measurement of the satellite luminosity function provides powerful new constraining power; we compare these results with predictions from four different simulations and show that although the models perform similarly overall, no one model reproduces the satellite luminosity function reliably at all redshifts and host stellar masses. This result highlights the continued need for improvement in understanding the fundamental physics that governs satellite galaxy evolution.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (NNX14AH35G)en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/mnras/stw1860en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleThe missing satellite problem in 3Den_US
dc.typeArticleen_US
dc.identifier.citationNierenberg, A. M.; Treu, T.; Menci, N.; Lu, Y.; Torrey, Paul and Vogelsberger, M. “The Missing Satellite Problem in 3D.” Monthly Notices of the Royal Astronomical Society 462, no. 4 (July 30, 2016): 4473–4481.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.mitauthorTorrey, Paul A.
dc.contributor.mitauthorVogelsberger, Mark
dc.relation.journalMonthly Notices of the Royal Astronomical Societyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsNierenberg, A. M.; Treu, T.; Menci, N.; Lu, Y.; Torrey, Paul; Vogelsberger, M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5653-0786
dc.identifier.orcidhttps://orcid.org/0000-0001-8593-7692
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record