Show simple item record

dc.contributor.authorAsadnia, Mohsen
dc.contributor.authorKottapalli, Ajay Giri Prakash
dc.contributor.authorKaravitaki, K. Domenica
dc.contributor.authorWarkiani, Majid Ebrahimi
dc.contributor.authorMiao, Jianmin
dc.contributor.authorCorey, David P.
dc.contributor.authorTriantafyllou, Michael S
dc.date.accessioned2017-05-01T18:32:34Z
dc.date.available2017-05-01T18:32:34Z
dc.date.issued2016-09
dc.date.submitted2016-04
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/108548
dc.description.abstractWe report the development of a new class of miniature all-polymer flow sensors that closely mimic the intricate morphology of the mechanosensory ciliary bundles in biological hair cells. An artificial ciliary bundle is achieved by fabricating bundled polydimethylsiloxane (PDMS) micro-pillars with graded heights and electrospinning polyvinylidenefluoride (PVDF) piezoelectric nanofiber tip links. The piezoelectric nature of a single nanofiber tip link is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Rheology and nanoindentation experiments are used to ensure that the viscous properties of the hyaluronic acid (HA)-based hydrogel are close to the biological cupula. A dome-shaped HA hydrogel cupula that encapsulates the artificial hair cell bundle is formed through precision drop-casting and swelling processes. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. Functioning with principles analogous to the hair bundles, the sensors achieve a sensitivity and threshold detection limit of 300 mV/(m/s) and 8 μm/s, respectively. These self-powered, sensitive, flexible, biocompatibale and miniaturized sensors can find extensive applications in navigation and maneuvering of underwater robots, artificial hearing systems, biomedical and microfluidic devices.en_US
dc.description.sponsorshipSingapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology)en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology (SMART) (Innovation Grants ING148079- ENG)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep32955en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleFrom Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performanceen_US
dc.typeArticleen_US
dc.identifier.citationAsadnia, Mohsen et al. “From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance.” Scientific Reports 6.1 (2016): n. pag.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorTriantafyllou, Michael S
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAsadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Karavitaki, K. Domenica; Warkiani, Majid Ebrahimi; Miao, Jianmin; Corey, David P.; Triantafyllou, Michaelen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4960-7060
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record