Show simple item record

dc.contributor.authorKaralis, Aristeidis
dc.contributor.authorJoannopoulos, John
dc.date.accessioned2017-05-01T18:41:06Z
dc.date.available2017-05-01T18:41:06Z
dc.date.issued2016-07
dc.date.submitted2016-02
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/108550
dc.description.abstractWe numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm[superscript 2] with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm[superscript 2] with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm[superscript 2] with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a ‘squeezed’ narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep28472en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.title‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversionen_US
dc.typeArticleen_US
dc.identifier.citationKaralis, Aristeidis, and J. D. Joannopoulos. “‘Squeezing’ near-Field Thermal Emission for Ultra-Efficient High-Power Thermophotovoltaic Conversion.” Scientific Reports 6.1 (2016): n. pag. © 2017 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorKaralis, Aristeidis
dc.contributor.mitauthorJoannopoulos, John
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKaralis, Aristeidis; Joannopoulos, J. D.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4719-0222
dc.identifier.orcidhttps://orcid.org/0000-0002-7244-3682
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record