Observation of Aubry-type transition in finite atom chains via friction
Author(s)
Bylinskii, Alexei; Gangloff, Dorian; Counts, Ian Thomas Hunt; Vuletic, Vladan
DownloadObservation of Aubry-type transition in finite atom chains via friction.pdf (2.284Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
The highly nonlinear many-body physics of a chain of mutually interacting atoms in contact with a periodic substrate gives rise to complex static and dynamical phenomena, such as structural phase transitions and friction. In the limit of an infinite chain incommensurate with the substrate, Aubry predicted a transition with increasing substrate potential, from the chain’s intrinsic arrangement free to slide on the substrate, to a pinned arrangement favouring the substrate pattern. So far, the Aubry transition has not been observed. Here, using spatially resolved position and friction measurements of cold trapped ions in an optical lattice we observed a finite version of the Aubry transition and the onset of its hallmark fractal atomic arrangement. Notably, the observed critical lattice depth for few-ion chains agrees well with the infinite-chain prediction. Our results elucidate the connection between competing ordering patterns and superlubricity in nanocontacts—the elementary building blocks of friction.
Date issued
2016-03Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Nature Materials
Publisher
Nature Publishing Group
Citation
Bylinskii, Alexei; Gangloff, Dorian; Counts, Ian and Vuletić, Vladan. “Observation of Aubry-Type Transition in Finite Atom Chains via Friction.” Nature Materials 15, no. 7 (March 2016): 717–721.
Version: Original manuscript
ISSN
1476-1122
1476-4660