MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

PREDICTIONS OF THE ATMOSPHERIC COMPOSITION OF GJ 1132b

Author(s)
Schaefer, Laura; Wordsworth, Robin D.; Sasselov, Dimitar; Berta-Thompson, Zachory K
Thumbnail
DownloadSchaefer-2016-PREDICTIONS OF THE ATMOSPHERIC C.pdf (979.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
GJ 1132b is a nearby Earth-sized exoplanet transiting an M dwarf, and is among the most highly characterizable small exoplanets currently known. In this paper, we study the interaction of a magma ocean with a water-rich atmosphere on GJ 1132b and determine that it must have begun with more than 5 wt% initial water in order to still retain a water-based atmosphere. We also determine the amount of O[subscript 2] that can build up in the atmosphere as a result of hydrogen dissociation and loss. We find that the magma ocean absorbs at most ~10% of the O[subscript 2] produced, whereas more than 90% is lost to space through hydrodynamic drag. The most common outcome for GJ 1132b from our simulations is a tenuous atmosphere dominated by O[subscript 2], though, for very large initial water abundances, atmospheres with several thousands of bars of O[subscript 2] are possible. A substantial steam envelope would indicate either the existence of an earlier H[subscript 2] envelope or low XUV flux over the system's lifetime. A steam atmosphere would also imply the continued existence of a magma ocean on GJ 1132b. Further modeling is needed to study the evolution of CO[subscript 2] or N[subscript 2]-rich atmospheres on GJ 1132b.
Date issued
2016-09
URI
http://hdl.handle.net/1721.1/108568
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
Astrophysical Journal
Publisher
IOP Publishing
Citation
Schaefer, Laura et al. “PREDICTIONS OF THE ATMOSPHERIC COMPOSITION OF GJ 1132b.” The Astrophysical Journal 829.2 (2016): 63. © 2016 The American Astronomical Society
Version: Final published version
ISSN
1538-4357

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.