Show simple item record

dc.contributor.authorAbdul Hadi, Sabina
dc.contributor.authorSaylan, Sueda
dc.contributor.authorDahlem, Marcus S.
dc.contributor.authorNayfeh, Ammar
dc.contributor.authorMilakovich, Timothy J
dc.contributor.authorBulsara, Mayank T
dc.contributor.authorFitzgerald, Eugene A
dc.date.accessioned2017-05-02T16:24:39Z
dc.date.available2017-05-02T16:24:39Z
dc.date.issued2015-01
dc.date.submitted2014-09
dc.identifier.issn2156-3381
dc.identifier.issn2156-3403
dc.identifier.urihttp://hdl.handle.net/1721.1/108586
dc.description.abstractSingle-layer antireflective coating (SLARC) materials and design for GaAs1_xPx/Si tandem cells were analyzed by TCAD simulation. We have shown that optimum SLARC thickness is a function of bandgap, thickness, and material quality of top GaAs1-xPx/Sisubcell. Cells are analyzed for P fractions x = 0, 0.17, 0.29, and 0.37, and ARC materials: Si3N4, SiO2 , ITO, 11fO2, and Al2O3. Optimum ARC thickness ranges from 65-75 nm for Si3N4 and ITO to ~100-110 nm for SiO2. Optimum ARC thickness increases with increasing GaAs1_xPx absorber layer thickness and with decreasing P fraction x. Simulations show that optimum GaAs1-xPx/Siabsorber layer thickness is not a strong function of ARC material, but it increases from 250 nm for x = 0 to1 μm for x = 0.29 and 0.37. For all P fractions, Si3N4, 11fO2, and Al2O3 performed almost equally, while SiO2 and ITO resulted in ~1% and ~2% lower efficiency, respectively. Optimum SLARC thickness increases as the material quality of the top cell increases. The effect of ARC material decreases with decreasing GaAs1_xPx material quality. The maximum efficiencies are achieved for cells with ~1-μm GaAs0.71P0.29 absorber (r = 10 ns): ~26.57% for 75-nm Si3N4 SLARC and 27.62% for 75-nm SiO2/60-nm Si3N4 double-layer ARC.en_US
dc.description.sponsorshipMasdar Institute of Science and Technology (Abu Dhabi, UAE)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/JPHOTOV.2014.2363559en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceFitzgeralden_US
dc.titleDesign Optimization of Single-Layer Antireflective Coating for GaAs[subscript 1−x]xP[subscript x]x/Si Tandem Cells With x=0, 0.17, 0.29, and 0.37en_US
dc.title.alternativeDesign Optimization of Single-Layer Antireflective Coating for GaAs1−xxPxx/Si Tandem Cells With x=0, 0.17, 0.29, and 0.37en_US
dc.typeArticleen_US
dc.identifier.citationAbdul Hadi, Sabina, Tim Milakovich, Mayank T. Bulsara, Sueda Saylan, Marcus S. Dahlem, Eugene A. Fitzgerald, and Ammar Nayfeh. “Design Optimization of Single-Layer Antireflective Coating for GaAs[subscript 1−x]xP[subscript x]x/Si Tandem Cells With x=0, 0.17, 0.29, and 0.37.” IEEE J. Photovoltaics 5, no. 1 (January 2015): 425–431.en_US
dc.contributor.departmentMIT Materials Research Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverFitzgerald, Eugene Aen_US
dc.contributor.mitauthorMilakovich, Timothy J
dc.contributor.mitauthorBulsara, Mayank T
dc.contributor.mitauthorFitzgerald, Eugene A
dc.relation.journalIEEE Journal of Photovoltaicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAbdul Hadi, Sabina; Milakovich, Tim; Bulsara, Mayank T.; Saylan, Sueda; Dahlem, Marcus S.; Fitzgerald, Eugene A.; Nayfeh, Ammaren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1891-1959
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record