MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A control theoretic framework for modular analysis and design of biomolecular networks

Author(s)
Del Vecchio, Domitilla
Thumbnail
DownloadDel Vecchio_A control.pdf (402.1Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Control theory has been instrumental for the analysis and design of a number of engineering systems, including aerospace and transportation systems, robotics and intelligent machines, manufacturing chains, electrical, power, and information networks. In the past several years, the ability of de novo creating biomolecular networks and of measuring key physical quantities has come to a point in which quantitative analysis and design of biological systems is possible. While a modular approach to analyze and design complex systems has proven critical in most control theory applications, it is still subject of debate whether a modular approach is viable in biomolecular networks. In fact, biomolecular networks display context-dependent behavior, that is, the input/output dynamical properties of a module change once this is part of a network. One cause of context dependence, similar to what found in many engineering systems, is retroactivity, that is, the effect of loads applied on a module by downstream systems. In this paper, we focus on retroactivity and review techniques, based on nonlinear control and dynamical systems theory, that we have developed to quantify the extent of modularity of biomolecular systems and to establish modular analysis and design techniques.
Date issued
2013-10
URI
http://hdl.handle.net/1721.1/108595
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Annual Reviews in Control
Publisher
Elsevier
Citation
Del Vecchio, Domitilla. “A Control Theoretic Framework for Modular Analysis and Design of Biomolecular Networks.” Annual Reviews in Control 37.2 (2013): 333–345.
Version: Final published version
ISSN
1367-5788

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.