MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Novel Pressure Compensating Valve for Low-Cost Drip Irrigation

Author(s)
Wiens, Alexander Joshua; Winter, Amos G.
Thumbnail
DownloadA novel pressure.pdf (5.482Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
This paper presents a novel pressure-compensating flow restrictor for low-cost/low-pressure drip irrigation systems. There are nearly one billion subsistence farmers in the developing world who lack the resources and opportunities to rise out of poverty. Irrigation is an effective development strategy for this population, enabling farmers to increase crop yields and grow more lucrative plant varieties. Unfortunately, as a large fraction of subsistence farmers live off the electrical grid, the capital cost of solar or diesel powered irrigation systems makes them unobtainable. This cost could be drastically reduced by altering drip irrigation systems to operate at a decreased pressure such that lower pumping power is required. The work presented here aims to accomplish this by designing a drip emitter that operates at 0.1 bar, 1/10 the pressure of current products, while also providing pressure-compensation to uniformly distribute flow over a field. Our proposed pressure compensating solution is inspired by the resonating nozzle of a deflating balloon. First, a reduced order model is developed to understand the physical principles which drive the cyclic collapse of the balloon nozzle. We then apply this understanding to propose a pressure compensating emitter consisting of compliant tube in series with a rigid diffuser. A scaling analysis is performed to determine the ideal geometry of the system and the reduced order model is applied to demonstrate that the proposed design is capable of pressure compensation in the required operation range. Preliminary experiments demonstrating the collapse effect are presented, along with initial work to translate the concept to a robust physical device.
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/108630
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2014
Publisher
American Society of Mechanical Engineers (ASME)
Citation
Wiens, A. Josh, and Amos G. Winter. “A Novel Pressure Compensating Valve for Low-Cost Drip Irrigation.” ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 17-20 August, 2014, Buffalo, New York, USA, ASME, 2014. © 2014 by ASME
Version: Final published version
ISBN
978-0-7918-4636-0

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.