MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Almost Optimal Algorithm for Computing Nonnegative Rank

Author(s)
Moitra, Ankur
Thumbnail
DownloadMoitra-2016-Almost optimal.pdf (260.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Here, we give an algorithm for deciding if the nonnegative rank of a matrix M of dimension m \times n$ is at most r which runs in time (nm)[superscript O(r2)]. This is the first exact algorithm that runs in time singly exponential in r. This algorithm (and earlier algorithms) are built on methods for finding a solution to a system of polynomial inequalities (if one exists). Notably, the best algorithms for this task run in time exponential in the number of variables but polynomial in all of the other parameters (the number of inequalities and the maximum degree). Hence, these algorithms motivate natural algebraic questions whose solution have immediate algorithmic implications: How many variables do we need to represent the decision problem, and does M have nonnegative rank at most r? A naive formulation uses nr + mr variables and yields an algorithm that is exponential in n and m even for constant r. Arora et al. [Proceedings of STOC, 2012, pp. 145--162] recently reduced the number of variables to 2r[superscript 2] 2[superscript r], and here we exponentially reduce the number of variables to 2r[superscript 2] and this yields our main algorithm. In fact, the algorithm that we obtain is nearly optimal (under the exponential time hypothesis) since an algorithm that runs in time (nm)[superscript o(r)] would yield a subexponential algorithm for 3-SAT [Proceedings of STOC, 2012, pp. 145--162]. Our main result is based on establishing a normal form for nonnegative matrix factorization---which in turn allows us to exploit algebraic dependence among a large collection of linear transformations with variable entries. Additionally, we also demonstrate that nonnegative rank cannot be certified by even a very large submatrix of M, and this property also follows from the intuition gained from viewing nonnegative rank through the lens of systems of polynomial inequalities.
Date issued
2016-02
URI
http://hdl.handle.net/1721.1/108665
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
SIAM Journal on Computing
Publisher
Society for Industrial and Applied Mathematics
Citation
Moitra, Ankur. “An Almost Optimal Algorithm for Computing Nonnegative Rank.” SIAM Journal on Computing 45.1 (2016): 156–173. c 2016 Society for Industrial and Applied Mathematics
Version: Final published version
ISSN
0097-5397
1095-7111

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.