Show simple item record

dc.contributor.authorMaday, Y.
dc.contributor.authorMula, O.
dc.contributor.authorPatera, Anthony T
dc.contributor.authorYano, Masayuki
dc.date.accessioned2017-05-08T14:35:29Z
dc.date.available2017-05-08T14:35:29Z
dc.date.issued2015-02
dc.date.submitted2014-11
dc.identifier.issn0045-7825
dc.identifier.urihttp://hdl.handle.net/1721.1/108736
dc.description.abstractThe Generalized Empirical Interpolation Method (GEIM) is an extension first presented by Maday and Mula in Maday and Mula (2013) in 2013 of the classical empirical interpolation method (presented in 2004 by Barrault, Maday, Nguyen and Patera in Barrault et al. (2004)) where the evaluation at interpolating points is replaced by the more practical evaluation at interpolating continuous linear functionals on a class of Banach spaces. As outlined in Maday and Mula (2013), this allows to relax the continuity constraint in the target functions and expand both the application domain and the stability of the approach. In this paper, we present a thorough analysis of the concept of stability condition of the generalized interpolant (the Lebesgue constant) by relating it to an inf–sup problem in the case of Hilbert spaces. In the second part of the paper, it will be explained how GEIM can be employed to monitor in real time physical experiments by providing an online accurate approximation of the phenomenon that is computed by combining the acquisition of a minimal number, optimally placed, measurements from the processes with their mathematical models (parameter-dependent PDEs). This idea is illustrated through a parameter dependent Stokes problem in which it is shown that the pressure and velocity fields can efficiently be reconstructed with a relatively low-dimensional interpolation space.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (FA9550-09-1-0613)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR Grant N00014-11-1-0713)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cma.2015.01.018en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleThe Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equationen_US
dc.typeArticleen_US
dc.identifier.citationMaday, Y.; Mula, O.; Patera, A.T. and Yano, M. “The Generalized Empirical Interpolation Method: Stability Theory on Hilbert Spaces with an Application to the Stokes Equation.” Computer Methods in Applied Mechanics and Engineering 287 (April 2015): 310–334. © 2015 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorPatera, Anthony T
dc.contributor.mitauthorYano, Masayuki
dc.relation.journalComputer Methods in Applied Mechanics and Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMaday, Y.; Mula, O.; Patera, A.T.; Yano, M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2631-6463
dc.identifier.orcidhttps://orcid.org/0000-0002-8323-9054
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record