MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Technology variation vs. R&D uncertainty: What matters most for energy patent success?

Author(s)
Popp, David; Fisher-Vanden, Karen; Santen, Nidhi Rana; Webster, Mort
Thumbnail
DownloadWebster_What matters most.pdf (506.0Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
R&D is an uncertain activity with highly skewed outcomes. Nonetheless, most recent empirical studies and modeling estimates of the potential of technological change focus on the average returns to research and development (R&D) for a composite technology and contain little or no information about the distribution of returns to R&D – which could be important for capturing the range of costs associated with climate change mitigation policies – by individual technologies. Through an empirical study of patent citation data, this paper adds to the literature on the outcomes of energy R&D by focusing on the behavior of the most successful innovations for six energy technologies, allowing us to determine whether uncertainty or differences in technologies matter most for success. We highlight two key results. First, we compare the results from an aggregate analysis of six energy technologies to technology-by-technology results. Our results show that existing work that assumes diminishing returns but assumes one generic technology is too simplistic and misses important differences between more successful and less successful technologies. Second, we use quantile regression techniques to learn more about patents that have a high positive error term in our regressions – that is, patents that receive many more citations than predicted based on observable characteristics. We find that differences across technologies, rather than differences across quantiles within technologies, are more important. The value of successful technologies persists longer than those of less successful technologies, providing evidence that success is the culmination of several advances building upon one another, rather than resulting from one single breakthrough. Diminishing returns to research activities appear most problematic during rapid increases of research investment, such as experienced by solar energy in the 1970s.
Date issued
2013-11
URI
http://hdl.handle.net/1721.1/108755
Department
Massachusetts Institute of Technology. Engineering Systems Division
Journal
Resource and Energy Economics
Publisher
Elsevier
Citation
Popp, David et al. “Technology Variation vs. R&D Uncertainty: What Matters Most for Energy Patent Success?” Resource and Energy Economics 35.4 (2013): 505–533.
Version: Original manuscript
ISSN
0928-7655

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.