Nonlinear characterization of GeSbS chalcogenide glass waveguides
Author(s)
Choi, Ju Won; Sohn, Byoung-Uk; Chen, George F. R.; Smith, Charmayne; Richardson, Kathleen A.; Tan, Dawn T. H.; Han, Zhaohong; Kimerling, Lionel C; Agarwal, Anuradha; ... Show more Show less
DownloadNonlinear characterization.pdf (620.4Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
GeSbS ridge waveguides have recently been demonstrated as a promising mid – infrared platform for integrated waveguide – based chemical sensing and photodetection. To date, their nonlinear optical properties remain relatively unexplored. In this paper, we characterize the nonlinear optical properties of GeSbS glasses, and show negligible nonlinear losses at 1.55 μm. Using self – phase modulation experiments, we characterize a waveguide nonlinear parameter of 7 W[subscript −1]/m and nonlinear refractive index of 3.71 × 10[superscript −18] m[superscript 2]/W. GeSbS waveguides are used to generate supercontinuum from 1280 nm to 2120 nm at the −30 dB level. The spectrum expands along the red shifted side of the spectrum faster than on the blue shifted side, facilitated by cascaded stimulated Raman scattering arising from the large Raman gain of chalcogenides. Fourier transform infrared spectroscopic measurements show that these glasses are optically transparent up to 25 μm, making them useful for short – wave to long – wave infrared applications in both linear and nonlinear optics.
Date issued
2016-11Department
Massachusetts Institute of Technology. Materials Processing Center; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Scientific Reports
Publisher
Nature Publishing Group
Citation
Choi, Ju Won et al. “Nonlinear Characterization of GeSbS Chalcogenide Glass Waveguides.” Scientific Reports 6.1 (2016): n. pag.
Version: Final published version
ISSN
2045-2322