dc.contributor.author | Horowitz, Jordan M. | |
dc.contributor.author | Zhou, Kevin | |
dc.contributor.author | England, Jeremy L. | |
dc.date.accessioned | 2017-05-09T14:38:44Z | |
dc.date.available | 2017-05-09T14:38:44Z | |
dc.date.issued | 2017-04 | |
dc.identifier.issn | 1539-3755 | |
dc.identifier.issn | 1550-2376 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/108773 | |
dc.description.abstract | In the absence of external driving, a system exposed to thermal fluctuations will relax to equilibrium. However, the constant input of work makes it possible to counteract this relaxation and maintain the system in a nonequilibrium steady state. In this article, we use the stochastic thermodynamics of Markov jump processes to compute the minimum rate at which energy must be supplied and dissipated to maintain an arbitrary nonequilibrium distribution in a given energy landscape. This lower bound depends on two factors: the undriven probability current in the equilibrium state and the distance from thermal equilibrium of the target distribution. By showing the consequences of this result in a few simple examples, we suggest general implications for the required energetic costs of macromolecular repair and cytosolic protein localization. | en_US |
dc.description.sponsorship | Gordon and Betty Moore Foundation (GBMF4343) | en_US |
dc.publisher | American Physical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevE.95.042102 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | American Physical Society | en_US |
dc.title | Minimum energetic cost to maintain a target nonequilibrium state | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Horowitz, Jordan M.; Zhou, Kevin and England, Jeremy L. "Minimum energetic cost to maintain a target nonequilibrium state." Physical Review E 95 (2017 April): 042102. ©2017 American Physical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
dc.contributor.mitauthor | Horowitz, Jordan M. | |
dc.contributor.mitauthor | Zhou, Kevin | |
dc.contributor.mitauthor | England, Jeremy L. | |
dc.relation.journal | Physical Review E | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2017-04-04T18:55:42Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | American Physical Society | |
dspace.orderedauthors | Horowitz, Jordan M.; Zhou, Kevin; England, Jeremy L. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-9139-0811 | |
dc.identifier.orcid | https://orcid.org/0000-0001-8414-3153 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |