Show simple item record

dc.contributor.authorFaust, Ian Charles
dc.contributor.authorBrunner, Daniel Frederic
dc.contributor.authorLabombard, Brian
dc.contributor.authorTerry, James L
dc.contributor.authorWhyte, Dennis G
dc.contributor.authorBaek, Seung Gyou
dc.contributor.authorEdlund, Eric Matthias
dc.contributor.authorHubbard, Amanda E
dc.contributor.authorHughes Jr, Jerry
dc.contributor.authorKuang, Adam QingYang
dc.contributor.authorReinke, Matthew Logan
dc.contributor.authorShiraiwa, Shunichi
dc.contributor.authorWallace, Gregory Marriner
dc.contributor.authorWalk Jr, John R
dc.contributor.authorParker, R.
dc.date.accessioned2017-05-09T16:54:34Z
dc.date.available2017-05-09T16:54:34Z
dc.date.issued2016-05
dc.date.submitted2016-05
dc.identifier.issn1070-664X
dc.identifier.issn1089-7674
dc.identifier.urihttp://hdl.handle.net/1721.1/108781
dc.description.abstractFor the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt (t<[Greel letter tau lower case][subscript E upper case]) response of the scrape-off-layer (SOL) plasma to Lower Hybrid Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density (n[subscript e]>1.0×10[superscript 20] (m[superscript −3])). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Fusion Energy Sciences (Award No. DE-FC02-99ER54512-CMOD)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4951736en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Whyte via Chris Sherratten_US
dc.titleLower hybrid wave edge power loss quantification on the Alcator C-Mod tokamaken_US
dc.typeArticleen_US
dc.identifier.citationFaust, I. C., D. Brunner, B. LaBombard, R. R. Parker, J. L. Terry, D. G. Whyte, S. G. Baek, et al. “Lower Hybrid Wave Edge Power Loss Quantification on the Alcator C-Mod Tokamak.” Physics of Plasmas 23, no. 5 (May 2016): 056115.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.approverWhyte, Dennisen_US
dc.contributor.mitauthorFaust, Ian Charles
dc.contributor.mitauthorBrunner, Daniel Frederic
dc.contributor.mitauthorLabombard, Brian
dc.contributor.mitauthorParker, Ronald R
dc.contributor.mitauthorTerry, James L
dc.contributor.mitauthorWhyte, Dennis G
dc.contributor.mitauthorBaek, Seung Gyou
dc.contributor.mitauthorEdlund, Eric Matthias
dc.contributor.mitauthorHubbard, Amanda E
dc.contributor.mitauthorHughes Jr, Jerry
dc.contributor.mitauthorKuang, Adam QingYang
dc.contributor.mitauthorReinke, Matthew Logan
dc.contributor.mitauthorShiraiwa, Shunichi
dc.contributor.mitauthorWallace, Gregory Marriner
dc.contributor.mitauthorWalk Jr, John R
dc.relation.journalPhysics of Plasmasen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFaust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Reinke, M. L.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5049-2769
dc.identifier.orcidhttps://orcid.org/0000-0002-8753-1124
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-9261
dc.identifier.orcidhttps://orcid.org/0000-0003-4432-5504
dc.identifier.orcidhttps://orcid.org/0000-0002-9001-5606
dc.identifier.orcidhttps://orcid.org/0000-0001-8029-3525
dc.identifier.orcidhttps://orcid.org/0000-0002-8917-2911
dc.identifier.orcidhttps://orcid.org/0000-0001-8324-4227
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record